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ABSTRACT  

 

Creative Digital sound manipulation is a powerful means of personal expression. However, it remains explored by only a small 
number of engineers, mathematicians, and avant-garde musicians and composers. Others find the interfaces both obtuse and 
focused more on how the sounds are manipulated than what expressivity the manipulations offer. Yet digital sound manipulation 
can be accessible to everybody. It can even be a powerful way for people to explore, design, and create while learning about 
mathematics, dataflow, networks, and computer programming. 

SoundBlocks and SoundScratch are two different environments in which children can manipulate digital sound. SoundBlocks is a 
tangible programming language for describing dataflow with adaptive, context-aware primitives and real-time sensing. 
SoundScratch is a set of sound primitives that extend the media-rich capabilities of the children’s programming language called 
Scratch. 

Both environments have been created and developed as a way to explore how it might be possible to construct an environment 
in which youth design their own sounds. Children ages 10-15 years old have explored the environments and participated in user 
studies. Music educators have observed these studies, and their observations are summarized. 
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1. Introduction 

 

 

Figure 1: A Complete Set of SoundBlocks 

 

Figure 2: SoundScratch with DJ Scratch, an example program from Jay Silver 
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We are surrounded by digitally synthesized sounds. When we get in our cars, digital bells tell us 

our lights are on or our seat belts aren't fastened. We go to the movies, and the show is filled 

with a variety of sound effects. Almost all of our popular music has a large sampling of digital 

audio. It is commonplace for us to hear digital sound, and we accept it as part of our everyday 

world. Digitally manipulated sounds are as normal and natural to us as the natural environmental 

sounds that surround us. 

For musical expression, digitally synthesized sounds offer a new dimension to explore. Any 

preexisting sound can be manipulated in countless ways with filters, re-samplers, vocoders, and 

more, to bring out previously unrecognized qualities in the sound. With the power of today's 

computers, these manipulations can happen in real time, extending the concept of a sound 

designer to include digital performer. In the words of composer Trevor Wishart, “with digital 

synthesis, we can now explore the multidimensional space of sound itself, which may be molded 

like a sculptural medium in any way we wish (Wishart 1994).” 

Current digital synthesis interfaces use a combination of three techniques for interaction: 

mathematics, data manipulation, and physical or emulated hardware. Mathematical applications 

include Csound (Vercoe 1985) and SuperCollider (McCartney 1996). These languages give users the 

ability to describe the signals they wish to manipulate as a function of time and as a function of 

the signals operating on each other. They are excellent tools for understanding how sound is 

created mathematically, and for the physical modeling of sounds. 

Data manipulation languages include Pd (Puckette 1997), Max/MSP (D. Zicarelli, Yaylor et al. 

1990-2004; Zicarelli, Yaylor et al. 1997-2004) and VVVV(Meso 1999-2005). These languages 

are graphical. Patch cords connect various objects and the relationships between these objects 

mold the sound through data flow. Graphical data manipulation interfaces are an evolution of 

the original hardware devices and the interfaces they provided. 

Graphical interfaces are an artifact of how the original synthesizers and sequencers were 

designed. They are powerful in that they typically expose all states that a device can be in. No 

state for the device is hidden from the user. Commercial applications such as Reason 
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(Propellerhead 2001-2005) emulate these hardware devices, even going as far as to visually 

recreate the devices and patch cords, complete with stunning graphics. 

Each of these approaches to shaping sound allows limitless possibilities for sound manipulation. 

However, viewed as tools for personal expression, they are indirect to the user, buried behind 

mathematics, networking, and/or gadgetry. While the tools succeed in giving users nearly 

limitless capabilities for sound manipulation, they fail in that the interface they provide can 

distract from the purpose of these tools in the first place. Users may quickly feel inundated, 

overwhelmed, or merely dismissive with a mathematical language for describing sound when 

what they are looking for is what expressive capabilities they might find in these manipulations 

and not the manipulations themselves. This has led many artists and musicians to feel that digital 

manipulation in media is irrelevant to their work. 

In contrast to these approaches, we have created and tested SoundBlocks and SoundScratch. 

SoundBlocks is a tangible environment where young users connect blocks to describe network 

dataflow. SoundScratch are a set of extensions to manipulate audio in the children’s programming 

language called Scratch. Both environments emphasize the expressive capabilities of the sounds 

through the act of creation and design. These environments are biased toward digital sound 

manipulation as a personal, meaningful and fun artistic endeavor, rather than as a venture into 

mathematical, electronic or networking relationships. Lead by their own curiosity, children can 

design their own sounds by exploring these environments. In doing so, they will indirectly learn 

a great deal about networks, mathematics and hardware synthesizers and sequencers. The 

environment will shift the child's focus from the product of creation to the process of creation. 
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2. Extended Examples 

2.1 SoundBlocks 

SoundBlocks is a set of 14 blocks that children use to manipulate live and their recorded sounds. 

Each block has a name intended to appeal to kids and also to give some intuition as to what the 

block does. The blocks each have one output, between 0 and 4 inputs, and an RGB LED, which 

can show various hues. Some blocks also have sensors: buttons, a knob, or a microphone. 

Users attach the blocks to each other by selecting among the 9 semi-rigid cables of various 

lengths. The resulting network describes a set of sound manipulations. 

Besides manipulating the blocks, a user can also interact with the system using the sensors. As 

the user connects and disconnects blocks, turns knobs, presses buttons or speaks into the 

microphone, he hears the results immediately. At all times the network creates sound as 

determined by the configuration and state of the network and sensors. 

To the user, it appears that the blocks process the audio manipulations. Internally, however, no 

audio is processed in the blocks. Instead, the blocks function as a tangible interface to a 

computer which processes all of the sound manipulations. A full description of this process can 

be found in Chapter 5. 

 

Below I lay out a set of example patches to offer some intuition as to how SoundBlocks function 

to the user.  
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Figure 3: Direct Microphone Output 

Chris the Speaker is an RCA cable that attaches to a computer 
through a host circuit. The user hears whatever signal is 
symbolically sent to Chris. In this example, Mickey Mic is 
directly connected to Chris, so we hear the microphone signal. 

Besides one OUT, every block has an RGB LED, which gives 
users feedback related to the state of the block. Mickey Mic’s 
LED is to the left of his OUT jack and shows the amplitude of 
the signal. SoundBlock LEDs show ranges by changing shades 
of color from green, to blue, to red. The LED is green in this 
example, showing the amplitude of a signal is at a minimum i.e. 
the microphone is picking up no audio. 

 

Figure 4: Microphone with 1.5 Second Delay 

Mickey Mic’s “out” is connected to a block called Dorothy Delay’s 
Den which is, in turn, connected to Chris the Speaker. The blocks 
named after either rooms or places are modifiers. They typically contain a 
“how” input and a “what” input: What do we want to delay? How much 
do we want to delay it? In this case, the “what” is Micky Mic and the 
“how” is unspecified. The system defaults to a delay of 1.5 seconds. 

Besides showing the state of blocks, LEDs blink in sequence to show signal 
flow in the network. In this example, the LEDs will blink from Mickey 
Mic to Dorothy Delay’s Den, showing that the signal flows from one to 
the other. 

 

Figure 5: Microphone with Variable Delay 

We add to the previous configuration Pitch ‘R Number (as in Pitch or 
Number), and connect it to Dorothy Delay’s Den’s “how” output. Now 
delay is controlled by the user with Pitch ‘R Number’s potentiometer --- a 
knob that the user controls. 

Two Pitch ‘R Number blocks are shown. They are both the same, 
except for the form factor and minor implementation details. 

By turning Pitch ‘R Number’s knob while the microphone receives audio, 
the user shifts the pitch of the output by creating the Doppler effect. In this 
example, Pitch ‘R Number is sending parameter values. 
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Figure 6: Pitch 'R Number as Audio 

When connected directly to Chris, Pitch ‘R Number changes 
its audio output from numbers to tones. As the user turns the 
knob, a square wave shifts from 50Hz to 1kHz exponentially. 
In this picture, the LED is blue, so we know we are hearing a 
tone in the middle of this range. 

Note Pitch ‘R number has changed its output from numbers 
in Figure 5 to tones in this figure. This is an example of the 
context-aware adaptive behavior that all of the block 
demonstrate in the system. 

 

Figure 7: Wild N' Random 

A block called Wild ‘N Random Pitch ‘R’ Number 
(a.k.a. Random Wildcard) sends random pitches or numbers 
at a steady speed. The speed is set by the Wild ‘N Random’s 
“how” input which is, in this case, Pitch ‘R Number. Since 
Pitch ‘R Number’s LED is red and Wild ‘N Random is 
connected to Chris, we know the user is hearing square waves of 
a fast and steady pace between 50Kz and 1khz. 

Two Wild ‘N Random blocks are shown. Both are the same 
except for form factor. 

  

 

Figure 8: A PitchShifting Network 

This configuration is a popular one with children. Smooth 
Slider interpolates through values sent to its “what” input. 
Polly’s Pitchshift Parlor receives these interpolated values in 
its “how” input and Micky Mic in its “what” input. 
Therefore, Polly pitch-shifts the microphone input as a function 
of the sliding values. The entire signal is delayed by Dorothy 
Delay’s Den before being sent to Chris and thus being heard 
by the user. 

A related network is to substitute the Pitch ‘R Number 
block in place of the Smooth Slider and Wild ‘N Random 
blocks. Then the user can control the pitch shift with the knob. 

The Robotic Combiner Diner functions as a vocoder, and 
children often use it interchangeably with the pitch shifter. 
Robotic Combiner Diner’s inputs are context-aware. In 
this example, the microphone will be assigned the formant signal 
and the Smooth Slider will be the carrier, regardless of which 
is connected to which input. If either or both inputs do not have 
blocks attached to them, the block will choose default carrier 
and/or formant signals. 
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Figure 9: The Sample Maker 

The Sample Maker maintains a list of samples recorded in 
the network. When connected to Chris, any combination of 
blocks in the network can be plugged into its “record” input to 
record a sample. Samples can be added, deleted, and reviewed. 

Besides recording their own samples, users can choose to add a 
sample from an internal list of pre-recorded samples. The pre-
recorded samples are short and widely varied. They include 
sounds from traditional musical instruments, a horse galloping, 
whistles, and trains. If the user presses the “random sample” 
button, SoundBlocks will randomly choose one of these pre-
recorded samples and add it to the sample list 

 

Figure 10: A simple Sample Maker Network 

When functioning as a block in the network, The Sample 
Maker has two inputs:  “what” triggers what sample should be 
played. “How” controls the playback speed. In this example, 
Micky Mic is attached to The Sample Maker’s “what” 
input, so the amplitude of the microphone is controlling what 
sample should be played. Pitch ‘R Number is attached to 
The Sample Maker’s “how” input, so its value is controlling 
the playback speed. 

The “Ask Me” block is a helper block for users. When it is 
attached to Chris and a child block is plugged into it, it 
explains the child block’s function and suggests possible 
networks for this block. 
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2.2 SoundScratch 

SoundScratch is the name I have given to the sound extensions I have added to a children’s 

programming language called Scratch. In Scratch, users write scripts that manipulate costumes 

on a screen. The costumes can be any bit-mapped element, such as the user’s own computer 

drawings or jpeg images. The default costume is a cat. To write scripts for these costumes, 

users drag interlocking blocks from the command palette on the left of the screen to the 

script window in the middle of the screen. They can then watch their scripts execute in the 

world pane, a white area in the upper-right-hand corner where the costumes interact. 

In SoundScratch, users manipulate audio elements in much the same way they manipulate 

visual elements in Scratch. Below I lay out some example scripts showing the functionality of 

SoundScratch. 



 

- 24 - 

 

 

 

Figure 11: Scratch Startup Screen 

Users choose from one of the 8 categories of interlocking blocks. The categories can be seen in the upper-left-hand side of Figure 11 and the corresponding 
blocks for the category appear below. Users drag the blocks into the script window in the middle, connect the blocks, then click on them to execute their script. 
Typically users write their scripts to manipulate costumes such as the cat shown on the right. 



 

- 25 - 

 

Figure 12: A Close-up of SoundScratch 

SoundScratch is a set of blocks that have been added to the 
Sound category of Scratch. New projects load with two default 
sounds, meow and pop. 

 

Figure 13: Importing a sound 

Sounds can be imported into the environment or recorded on the 
fly. When a sound is imported into the environment, it will be 
listed below pop and meow in the Sounds category of the 
script window, as shown in Figure 13. It will also appear in the 
drop-down menu of the set sound to block, which is shown 
below. 

 

Figure 14: Starting and Stopping 

These blocks will play the first 5 seconds of guidance1. 
Guidance1 was imported into the project in Figure 13. 
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Figure 16: Pitch and Tempo 

Set pitch sets the pitch of a sound independent of speed. Set 
tempo sets the speed of a sound independent of pitch. When 
speed is a negative value, the sound will be played backwards. If 
both are set to the same value, the sound is resampled. 

These blocks will continually repeat guidance1 at the pitch of 
the current mouse x position and the speed of the current mouse 
y position. The forever loop is used so pitch and speed are 
continually updated with mouse movements. 

 

Figure 17: Bouncing a Sound 

These blocks will play pop forwards, then backwards, over and 
over again 

 

Figure 18: Sound Effects 

Besides tempo, pitch and volume, users can choose between a 
variety of sound effects, each of which can be controlled in real-
time. 

 

Figure 19: Live Microphone Input 

All sound manipulations and effects can also be applied to live 
microphone input. 

These blocks will delay the microphone input 1 second, use a 
vocoder to create a robotic effect, then play the result back at 
twice the speed. 

 

Figure 15: Resume 

The resume block starts a sound from where it 
was stopped. If the sound is already playing, it is 
ignored. 

These blocks play the first 5 seconds of guidance1. 
If the variable restart the sound is set, they will 
then restart guidance1 from the beginning. 
Otherwise they will resume playing guidance1 from 
where it was stopped. In this second case, the sound 
is essentially uninterrupted. 
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. 

 

 

 

Figure 20: Sprite Independence 

Each sprite in SoundScratch can contain its own independent set of sound 
manipulations. This set of 3 sprites each takes microphone input. One 
modifies the pitch of the signal dependent on the position of mouse x, one 
modifies the signal dependent on the position of mouse y, and one delays the 
signal one second. All 3 run concurrently when the green flag is clicked. The 
green flag can be seen in the upper-right-hand corner of Figure 11.  
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3. Motivation and Historical Perspective 

This section reviews the development of learning, electronic music, tangibility, and dynamic 

systems programming as it relates to SoundBlocks and SoundScratch. It shows how these ideas are 

connected, and how they might powerfully interact together, thus motivating the development of 

the two environments. 

3.1 Learning by Design 

“The child is curious. He wants to make sense out of things, find out how things 

work, gain competence and control over himself and his environment, and do 

what he can see other people doing. He is open, perceptive, and experimental. 

He does not merely observe the world around him. He does not shut himself off 

from the strange, complicated world around him, but tastes it, touches it, hefts it, 

bends it, breaks it (Holt 1967).” 

John Holt believed children learn best when playing and exploring. His idea stemmed naturally 

from a lineage of educators who had been studying how children learn. Froebel, who originated 

the kindergarten system in the 1830s, believed that children learn best through activity and 

exploration of their own environment (Brosterman 1997). More recently, educators have added 

that this activity and exploration can be focused when the child is the designer and the creator 

within the learning environment. Specifically, research nows suggest that children: 

• Learn best when given tools they find engaging (Papert 1993) 

• Develop the deepest understandings of a topic when they are free to 

create and design within that topic (Resnick, Bruckman et al. 1996) 

• Learn important skills about creative problem solving and about their 

own thinking when correcting mistakes in their own designs (diSessa 

2000) 

• Are most engaged in learning when inventing things they care about 

(Resnick, Rusk et al. 1998) 
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Perhaps children learn best when they are free to love what they create and free to create what 

they love. Seymour Papert dubbed a term for the philosophy, Constructionism, which he named 

after Piaget’s theory of Constructivism. Constructivism states that children learn best when they 

are active builders of knowledge. Constructionism states that children are best at being active 

builders of knowledge when they are building things. In the words of Papert: 

“Constructionism is built on the assumption that children will do best by finding 

(‘fishing’) for themselves the specific knowledge they need (Papert 1993) pg. 

139.” 

Papert’s work in the field has spawned a new field of educators called Constructionists. 

Generally, this group might suggest that a good educational tool should support an environment 

that provides the child with the opportunities to explore, create, and design in a way that is 

personally meaningful for them.  

3.2 Computers in the Learning Environment 

Many of the ideas that form Constructionism are, like John Holt’s ideas, a natural evolution of 

many generations of the philosophy of learning. What makes Constructionism such a dynamic 

philosophy now is that recent technology, specifically digital computing, is the perfect platform 

to support it. Specifically, programming itself gives children a way to explore by design, to 

create, and integrate their artistic and mathematic endeavors. 

Initial research exploring Constructionist philosophy within technology has centered around 

LOGO, a computer language which incorporates geometry, functional programming, and 

mathematics (Papert 1980). Since then, the ideas that LOGO introduced have been extended. 

StarLogo (Resnick 1996) lets children model complex, emergent, decentralized systems. 

NetLogo (Tisue and Wilensky 2004) gives children a modeling environment to design and 

explore complex and natural phenomena. Many other derivations exist. These derivations, like 

the original LOGO language on which they are based, are primarily visually oriented. They 

encourage children to use pictures first, then perhaps audio second, as their basis for artistic 

expression in these languages. The sound capabilities in these systems are very limited. 



 

- 30 - 

3.3 The Arts and Learning 

Extensive research has been done documenting that children benefit from learning and creating 

in the arts. Moreover, the arts connect with other disciplines and many feel that interdisciplinary 

learning richens and deepens the learning experience. The arts are free of learned formalisms. At 

the same time, artistic creations touch our immediate experiences. We can act spontaneously to 

our artistic creations and at the same time not know what to do (Bamberger 1979). This is at 

once a freeing experience and a profoundly educational one. As John Holt explains: 

“I said in How Children Fail that the test of intelligence was not how much we 

know how to do, but how we behave when we don’t know what to do. Similarly, 

any situation, any activity, that puts before us real problems that we have to solve 

ourselves, problems for which there are no answers in any book, sharpens our 

intelligence. The arts, like the crafts and the skilled trades, are full of such 

problems, which is why our skilled artists, artisans, and craftsmen are very likely 

to be sharp-witted people. Their minds are active and inventive; they have to be 

(Holt 1967).” 

Taken altogether, this makes a compelling case for educational tools connecting technology, 

learning by design, and learning in all of the arts. This is consistent and complementary with 

Constructionism. However, as with LOGO, most exploration that connects technology, learning 

by design and the arts has focused on visual arts. Less research has been done as to how these 

ideas might connect with music and sound. 

3.4 Music and Learning 

Within the arts, music offers opportunities and benefits similar to visual arts that can also be 

used to support the Constructionist framework. It is powerfully expressive, educational, and 

integrates well with other disciplines. The National Standards for Arts Education states that 

“music is a basic expression of human culture.” (The National Association for Music Education 

1994)  

Within the framework of Constructionism, some initial work in music has been done. In 1979 

Jeanne Bamberger used LOGO’s simple sound primitives to develop two mini-worlds: 
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TUNEBLOCKS I and TUNEBLOCKS II (Bamberger 1979). Both TUNEBLOCKS I and 

TUNEBLOCKS II were based on Bamberger’s ideas that music is best explored through high-

level structures such as large note groups. These groups form a mini-world in which users can 

explore, discover and learn. TUNEBLOCKS, like the LOGO language it is built on top of, 

supports only one voice at a time. It has no polyphonic capabilities. 

Aside from Bamberger’s work and some tangible interfaces, however, very little is actually 

available for music and sound that supports the Constructionist framework. What little is 

available is mostly focused on high-level structures such as notes and groups of notes. Designers 

of the environment created these notes, not the child. Typically the child cannot even modify 

them. As Constructionists generally wish to support different types of learners with different 

styles of learning, there is ample motivation for more research in sound and music that supports 

Constructionist framework. 

Constructionist philosophy suggests that children will find projects meaningful that connect with 

their environment and their surroundings. In the domain of music and sound, this could 

arguably be their own voices and the sounds around them. It may also include the music they 

listen to, which is to a large extent created and modified with both traditional sounds and 

sophisticated digital processing. How can we create an environment for manipulating not notes 

but sound itself which supports the Constructionist framework?  

3.5 Analog Synthesizers 

3.5.1 The RCA Synthesizer 

Initially, electronic sound synthesis consisted of combining mathematical formulae to generate 

waves. Initial forays used strictly analog components. The first commercial synthesizer, the RCA 

Synthesizer, was introduced in 1956. Harry Olsen and Hebert Belar, employees of RCA’s 

Princeton Laboratories, designed the synthesizer inspired by a 1949 publication titled A 

Mathematical Theory of Communication (Shannon and Weaver 1949).  This publication asserted that 

it would be possible to generate popular music by manipulating high-level structures based on 

probabilistic models. The publication greatly influenced the two engineers. Specifically, they 

attempted with their design to make it possible to manipulate both the low-level sounds of notes 

themselves and the high-level groupings of these notes. 
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Although Olsen and Belar were disappointed that their synthesizer did not achieve all of the 

fluency and control they had wished, the RCA marketing team apparently disagreed. RCA 

released a 4-disc box set of 45-RPM records titled The Sounds and Music of the RCA Electronic Music 

Synthesizer. At the beginning of the first record, the narrator announces the synthesizer and 

proclaims it to be “a system capable of producing any sound which has ever been produced and 

any sound that may be imagined by the human mind (Schultz 2005).” 

3.5.2 The Modular Synthesizer 

Users programmed the RCA Synthesizer using punched paper and a typewriter-style keyboard. 

American engineer Robert Moog thought there might be a better a way. He designed the first 

widely-recognized modular synthesizer: a synthesizer comprised of self-contained connectable 

units. Moog presented a paper based on this idea at the Audio Engineering Society, which he 

entitled “Voltage-Controlled Electronic Music Modules” in the fall of 1964. He began accepting 

orders for his modular synthesizer immediately. 

To program a modular synthesizer, users connect patch cords between modules’ ins and outs. 

The resulting program describes the data flow of the synthesizer, and is called a patch. All 

modules can be connected to each other so any module or any combination of modules can 

interact with any other combination in any way the user wishes. Because of this, users can 

explore a large possibility of data flow networks even with only a few modules in a system. 

Moreover, the modular patch bay system provides an easy interface from which users can 

experiment to hear the resulting sounds from these networks. 
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After Moog’s pioneering presentation of 1964, the modular synthesizer became an astounding 

success. In the later half of the 1960s and throughout the 1970s especially, the modular 

synthesizer was an integral part of a large amount of popular music. Indeed modular synthesizers 

are still manufactured, and some musicians continue to perform on them as well. Figure 21 

shows a close-up taken in September of 2004 of some cabinets from Joe Paradiso’s modular 

synthesizer. Dr. Paradiso performed on the synthesizer at that time as part of Ars Electronica 

2004 (Paradiso 2004).  

 

Figure 21: A close-up of  cabinets from Joe Paradiso's modular synthesizer 
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3.6 Digital Computers in Music: Two Roads 

By 1955, people were beginning to explore how digital computers might also contribute to 

music. That year, computer music pioneer Lejaren Hiller worked with Leonard Isaacson to 

generate compositional algorithms using a computer. He used these algorithms in his Illiac Suite 

for String Quartet, the first recognized composition with computer-generated material. By 

achieving this he had succeeded in using electronic means to model high-level structures, exactly 

what Oslen and Belar had wished to accomplish with their synthesizer. Unlike the synthesizer 

however, the computer did not also perform the work. It made no sound. 

Initially a chemist at DuPont for five years, Hiller had assumed a post as Professor of Music at 

Indiana University (Hiller and Isaacson 1959). He continued work specifically in algorithmic 

composition with high-level structures throughout his career. His groundbreaking work in this 

field created the pathway for the development of algorithmic composition that continues today. 

Max Matthews, an engineer at Bell Laboratories and also a pioneer integrating digital computers 

with music, had an approach quite different from Hiller’s (Holmes 2002; Manning 2004). 

Matthews explored how digital components could be programmed to emulate analog circuits, 

such as would be found in the RCA Synthesizer. In Matthews’ work, algorithmic composition is 

not the focus. Instead, it is the exploration of the sound itself. 

How could sound be designed, created, and manipulated digitally? What does it mean to 

describe a sound mathematically or programmatically in a computer? Seeking answers to these 

questions, Matthews and his team wrote the first sound synthesis language, MUSIC I, in 1957. 

They developed the language iteratively, renaming later versions: MUSIC II, III, IV. With 

MUSIC IV, they arrived at a powerful computational paradigm to express sound manipulation 

programmatically. Derivatives of this language include Csound, and are still in use today 

(Lefford, Scheirer et al. 1999). 

Matthews and Hiller paved separate and distinct roads for the digital music community. Hiller’s 

work builds upon our traditional notions of what defines a composer. Before Hiller, a composer 

chose each note to write down on the page. Hiller showed a way that a composer might instead 

choose a set of rules or complex algorithmic behaviors that a computer would translate to 

specific notes. What remains consistent in Hiller’s work is the notion that the composer is not a 
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performer and the performer is not a composer. The notes or rules that govern them are chosen 

before the performance by the composer and will not (intentionally) be changed in the 

performance outside of the composer’s control. In fact, the performance is a completely 

separate event from composition.  

Contrasting this, Matthews’ initial work combines our notions of traditional instrument designer 

and traditional composer. Like a traditional instrument designer, users of Music IV draw from a 

set of tools by which to describe sound itself, mapping the timbre and envelope of sound to 

events. Like a traditional composer, users then provide a composition complete with score 

describing what timbres and envelopes of sound they wished for over time. Contrasting Hiller’s 

algorithmic score descriptions, Matthew’s score descriptions were completely defined. The user 

specified each note’s time and duration exactly. The computer, given both the instrument and 

the score, could then perform the music. 

As digital computers continued to advance, Matthews pushed the notion further. Himself a 

violinist, Matthews explored how simple physical buttons could be mapped to an instrument’s 

controls in real time. This allowed the user, already the instrument designer and composer, to 

also be a performer within the system. Through this work he eventually developed the Radio 

Baton, which he continues to refine today (Chadabe 1997). 

3.7 Music Concrète 

Like Matthews, Pierre Schaeffer was trained as an electronic engineer. However, Schaeffer did 

not care much for the work of Matthews. Matthews and the other artists and engineers of 

elektronische Musik were synthesizing waves from mathematical functions. Schaeffer wished to 

manipulate naturally produced sounds. Using variable speed phonographs and tape recorders, 

Schaeffer recorded sounds, then manipulated them by physically manipulating the turntables and 

the tape itself. By splicing and joining tape, he could loop and combine sounds. 

In 1948 Schaeffer teamed up with composer Pierre Henry, and the two worked closely together 

to produce the first public performance of Music Concrète --- composed manipulation of recorded 

sounds.  On March 18, they performed their Symphonie in the École Normale de Musique in 

Paris. Central to the performance was the performance equipment itself: several sets of 

turntable, mixers, and loudspeakers. Manipulating the unwieldy turntables in a live situation 
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proved a difficult challenge and the performance went poorly. Nonetheless, Music Concrète had 

begun. 

Music Concrète has had a profound impact on the development of popular music. Schaeffer’s ideas 

eventually led to the Mellotron, a keyboard that used tape loops and was a precursor to the 

modern-day digital sampler. Likewise, various common effects units such as flangers, delay and 

reverberation units initially were controlled by analog tape, inspired by the ideas of Schaeffer and 

Music Concrète. Even the modern-day DJ owes something to Schaeffer, who had been controlling 

speeds of turntables in the 1930s. 

Popular artists of the 60s and 70s especially made extensive use of tape loops. Steely Dan, for 

example, created the first widely recognized drum loop in the album Gaucho. Pink Floyd relied 

heavily on tape loops for their album Ummagumma, and later in Dark Side of the Moon. John 

Lennon and Yoko Ono also did quite extensive experimentation with many of the ideas 

introduced as Music Concrète. It was not easy to make these loops. John Lennon explained how 

Revolution #9 was mixed: 

"It has the basic rhythm of the original 'Revolution' going on with some twenty 

loops we put on, things from the archives of EMI. We were cutting up classical 

music and making different size loops, and then I got an engineer tape on which 

some test engineer was saying, 'Number nine, number nine, number nine.' All 

those different bits of sound and noises are all compiled. There were about ten 

machines with people holding pencils on the loops - some only inches long and 

some a yard long. I fed them all in and mixed them live (Miles 1997) pg. 484.” 

3.8 Digital Sound Manipulation Today 

3.8.1 Sound Synthesis Languages 

Less than ten years after Max Matthews developed Music IV, Barry Vercoe developed Music 360, 

then Music 11. By 1985, Vercoe released Csound, innovative in part because it was written in C 

and could therefore be compiled on a variety of platforms. By 1990, computers were powerful 

enough that Csound could create interesting analysis and synthesis in real time (Vercoe and Ellis 

1990). More recently, there has been an increasing number of real-time sound synthesis 
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languages. Some, like RTCmix and SuperCollider, offer a traditional text-based structure. More 

recent languages, like Max/MSP, Pure Data, and VVVV describe relationships graphically.  

These languages, like Music IV that inspired them, are focused first and foremost on the 

manipulation of mathematically derived synthetic sounds. This is in contrast to our 

Constructionist philosophy and to Music Concrète. We are primarily concerned with manipulating 

the sounds of the world around us. 

This is not to say that these sound synthesis languages cannot manipulate natural sounds. On the 

contrary, these languages are extremely powerful and can manipulate them in countless ways. In 

fact, all of these languages offer a universe of possibilities for natural sound manipulation that 

have yet to be discovered. However, the structures and interfaces of these languages require 

users to first become familiar with synthetic manipulations such as sine waves, since expressing 

manipulation of real-world sounds in these languages is more difficult. 

3.8.2 Digital Samplers and Commercial Software 

Synthesizers have grown up considerably since the days of the RCA synthesizer. Interesting for 

our purposes, they now encompass most of the ideas and resulting effects generated from the 

Music Concrète movement. Most notably, the modern synthesizer records sounds, which can then 

be manipulated in the environment in any way we wish. 

Consistent with their history, modular synthesizers are manipulated or, in some sense, 

programmed, by manipulating patch cords to inputs and outputs of various functions. Recently, 

modular software synthesizers have been developed. These products, such as ReakTor, Reason, 

and VirtualDJ(VirtualDJ 2001-2005) emulate hardware modular synthesizers. This offers the 

experienced audio engineer a way to expand his or her possibilities for the manipulation of 

sound at a greatly reduced price. However, it is highly specialized and is not a true programming 

environment. Furthermore, it offers little insight for the novice that will help him explore 

operation of the emulated hardware in a way that might give insight to what might be possible 

sonically. Therefore, it is not appropriate for development within the Constructionist 

framework. 
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Many of these software packages also include a package of presets that produce spectacular 

“gee-whiz” sounds. Because of this, people with literally no understanding of sound 

manipulation at all get seemingly impressive results with little or no effort. While this might help 

software sales, it leaves many disillusioned. They have fun with the presets, but do not find 

themselves in an environment that they can successfully explore. They may feel bored, 

uninspired and unsure of what or how to develop further abilities with digital sound 

manipulation. 

3.8.3 High-level music structures 

Algorithmic composition continues to be actively explored (Trevino-Rodriguez and Morales-

Bueno 2001; Assayah and Dubnov 2004; Adan 2005). Music notation software has also 

developed significantly (Sibelius 1998-2005; Finale 2003-2005).  

Sequences (Cakewalk 1987-2005) and loops in particular have become a central part of popular 

music. They can now be easily manipulated with such commercial software as Fruity Loops 

(FruityLoops 2003-2005) and Acid (Sony Media Software 2005). These products also come with 

a great package of samples and easy ways to create the common loops we hear in popular music. 

They give users tools intended to help them imitate popular music, and they appeal in that they 

are feature-rich and it is easy to get initially impressive results. They are not, however, an 

environment in which to explore the nature of the sounds themselves. 

Developed at the Media Lab, Hyperscore (Farbood and Jennings 2004) offers a creative and 

playful way for children to draw musical ideas. It is in some sense an environment in which users 

with no musical training can sketch their pieces visually. The system maps shapes and colors 

intuitively, producing a MIDI output which people can listen to or have professional musicians 

perform. Hyperscore is an excellent product, and many users have enjoyed exploring the world 

of composition with this innovative tool. However, as it is for manipulation of higher-level 

structures, it does not facilitate nor does its structure lend itself to manipulation of real-world 

sounds.  
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3.9 The Scratch Programming Language 

Scratch (Maloney, Burd et al. 2004) is a computer programming language for children that is in 

active development. The language was inspired in part from the observations of Mitchel Resnick 

and others at Computer Clubhouses (Resnick, Kafai et al. 2003). The youth at clubhouses 

showed a natural interest in computers but showed less interest in programming. They wanted 

to use the computer to draw pictures, make interactive art and stories, and play games. 

Programming languages, even those designed within the Constructionist framework, did not 

seem to support a direct enough connection with these activities to capture the children’s 

imaginations. Instead the youth were drawn to software where they could quickly draw and 

create, such as Adobe Photoshop (Adobe Inc. 1990-2005). The Computer Clubhouses are, in 

some sense, a Photoshop Culture. 

Resnick and his colleagues proposed that a computer programming language, Scratch, be created 

which offers youth the power, usability and a direct link to their desire for self-expression that 

Photoshop offered. Two years later, Scratch now offers ways for youth to design and create 

animated stories, interactive art, and games through programming. 

Scratch is an ideal environment within which to explore possibilities for sound manipulation for 

youth. Experienced Constructionists have designed it from the ground up. It has an appealing 

interface for children. Already it encompasses a look and feel intended for media manipulation. 

The program itself is expertly constructed, so extending its capabilities within its framework is 

simple and straightforward. In short, it is the culmination of years of research connecting youth, 

education, and technology. 

3.10 Designing a Musical Instrument 

While Scratch offers a wonderful environment within a computer to explore sound manipulation, 

the computer itself is a potentially limiting constraint. Sound itself is not an expressive device. It 

is how a sound changes that gives it expressive power (Meyer 1956). The traditional mainstream 

computer interfaces of keyboard, mouse and screen have not been designed for nor do they 

provide a transparent way to achieve this capability. Some musicians attempt to perform with 

traditional computer interfaces, and these performances are sometimes called laptop concerts. 

However, there is not a way through traditional interfaces to describe physical gesture, a sense of 
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touch or a sense of feel in a natural or familiar way. These qualities are a central part of personal 

expression. Perhaps for both cultural and physical reasons, they make up to a large extent what it 

means to play a musical instrument, to see an instrument played, and to emote with that 

instrument. 

Further, tangible interfaces offer possibilities for interactive play and 3-dimensional construction. 

Within this environment, there are possibilities for networking and dataflow descriptions that 

may be more intuitive for users if they can see, touch, grasp and feel the manipulations 

themselves. Future large-scale projects could include multiple sensors, speakers, and 

microphones, all of which would require development outside the computer. 

3.11 Tangible Environments for Sound 

In 1997 Hiroshi Ishii and Brygg Ullmer argued for a vision of Tangible Bits (Ishii and Ullmer 

1997). With the metaDESK, the transBOARD and the ambientROOM, they demonstrated the need 

for interactive surfaces, graspable physical objects that connect to internal computer 

manipulations, and ambient awareness to connect foreground cues with background cues. Ishii 

and Ullmer further motivated the development of tangible interfaces by demonstrating in their 

work that the GUI interface is too restrictive. GUI interfaces cannot embrace the richness of 

senses and skills people have developed through their interaction with the physical world.  

A year later, Gorbet, Orth and Ishii developed a modular design for tangible manipulation of 

digital information topography. Their system, Triangles (Gorbet, Orth et al. 1998), consisted of 

multiple equilateral physical triangles, each with a micro controller and unique ID tag. A host 

computer monitored the topological configuration of the triangles and mapped various physical 

configurations with sound and video. Triangles described a flexible networking system, and the 

designers implemented several software environments for triangles within which children could 

tell non-linear stories through video and audio, or create and trigger various media clips. 

Moreover, by designing Triangles, Gorbet, Orth and Ishii demonstrated that it was possible to 

create low-bandwidth, computationally inexpensive modular objects which could describe 

complex physical and virtual structures. 

Offering a way to build musical phrases and structures, Block Jam (Newton-Dunn, Najano et al. 

2003) consists of a set of physical cubes networked to a computer. Users interact with the 
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physical cubes, as well as with a computer screen. Block Jam is similar to Triangles in that various 

combinations of blocks can be combined to describe complicated network relationships. 

However, it differs in that each cube has an LED and a clickable button. Also there are different 

types of blocks, such as a play block and a path block. By combining these various blocks, users 

can create nonlinear sequences and describe high-level structures. The environment provides 

predefined sounds and various high-level rules for loops. 

Inspired in part by Ishii and Ullmer's work, there has been recent research related to tangible 

interfaces for music systems. The designers of these systems, for practical reasons, often limit 

the environment to a table top or similarly-sized surface. For example, the Audiopad (Patten, 

Recht et al. 2002) is a composition and performance instrument for electronic music which 

tracks the positions of objects on a tabletop surface and converts their motion into music. Using 

RFID tags, the system lets the user pull sounds from a giant set of samples to create melody and 

rhythm. Audio d-Touch (Costanza, Shelley et al. 2003) provides a learning environment for music 

composition and performance, tracking tangible blocks with a camera mounted above a 

tabletop. The Music Table (Berry, Makino et al. 2003) is a composition system that provides a 

tactile and visual representation of music which can be manipulated to make musical patterns. 

Musical Trinkets (Paradiso, Pardue et al. 2003) uses RFID technology to map various sounds and 

musical gestures to up to 30 unique objects, as a user moves them freely within the vicinity of a 

tag reader. There are many others, including Jam-o-Drum, reacTable*, Instant City, Audiocube, 

Scanjam, Smallfish, Lemur, Yamaha Music Table, and Fisher-Price's Play Zone Music Table. 

The music controller has become a common tangible interface for sound. With a music 

controller, the user can manipulate sensors. Manipulation of the mappings of the sensors is 

typically done through virtual means with existing software. For example, the Adaptive Music 

Controller (Merrill 2004) is a hardware device with predefined sounds. The device is hand-held, 

and a user can train the system by mapping motions they make while holding the device to 

sounds predetermined in the system using Pd. The system uses an Inertial Measurement Unit 

called a Stack (Benbasat and Paradiso 2005) to track motions in all three axes. The Sonic Banana 

(Singer 2003) is a two-foot long flexible rubber tube with a network of four bend sensors and a 

single pushbutton switch. The sensors send continuous raw data in the form of MIDI controller 

parameters. Typically, the Sonic Banana's data is then routed to a Max/MSP patch where it is 

mapped to sounds, much in the same way as the Adaptive Music Controller. There are numerous 
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similar examples of this approach, including BeatBugs (Aimi 2002), and Shapers (Weinberg, Orth 

et al. 2000). 
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4. SoundBlocks: Initial Work 

 

 

 

4.1 SoundBlocks 

Eleven principles have guided the design of SoundBlocks: 

4.1.1 Inexpensive  

Digital sound manipulation should be accessible to everyone. For this to be possible, any digital 

sound manipulation environment must be commercially viable. It cannot be cost prohibitive. 

This is an extremely challenging confinement. Lego estimates that a maximum of 10% of the 

consumer price of an item can be used to address technological implementation cost (Risvig 

2005). This means that a $50 product can have only $5 worth of electronics in it. 

4.1.2 Does not require a traditional Windows, Linux, or Macintosh computer 

There are numerous disadvantages to systems that are dependent on standard Windows, Mac 

OS, and Linux PCs. Such computers are typically general purpose, meaning that they are used 

for a multitude of tasks and, therefore, are not necessarily available at convenient times. They 

often require initial setup, and software maintenance seems continually necessary to maintain 

Figure 22: Interacting with SoundBlocks 
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smooth operation. Even after installation, computers are often inconvenient, as software needs 

to be run manually by the user. Traditional computers often have to be booted up and their state 

cannot be predicted before operation due to the variety of users that might use a particular 

computer. Creating robust software for generic hardware is a continual challenge for software 

developers, and glitches are common. Specifically, glitches in sound are notorious with all 

operating systems, as these systems are not designed with a high priority given to real-time 

manipulation.  

Perhaps equally important to the reasons stated above, computers are not generally viewed by 

our society as a playful environment for design and exploration. Instead, they are often viewed 

as either a tool for productivity or a game machine. This could conceivably hinder a person’s 

creative approach when exploring an unfamiliar environment. 

 

A traditional computer also inhibits portability of the system. If the blocks require a traditional 

computer, for example, a user cannot easily carry the blocks with her to the grocery store, to her 

friends, to the dining room table, or on the floor. A traditional computer draws high current, so 

inexpensive battery power can be an insurmountable challenge.  

Traditional computers are also relatively expensive. This expense challenges the playful 

environment SoundBlocks might otherwise provide, as parents, teachers, and the children they 

look after become concerned with proper care of the computer to preserve it as an investment. 

4.1.3 Scalable 

Although initial prototypes as realized for this thesis may only support a limited number of 

operations with a few blocks, the infrastructure the system provided should allow development 

of a nearly limitless number of blocks, with each block capable of supporting a high level of 

sophistication. The blocks should be capable of supporting arbitrarily complex operations and 

allow unique descriptions of state and configuration as provided by the user. A future 

programming environment for users to program the blocks might even be possible. The 

structure of the system should allow blocks to have a reasonably large number of inputs, outputs 

and sensors on each block. 
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4.1.4 Aesthetically pleasing 

If the blocks are to be a tool for artistry, they should themselves be artistic. This in itself 

provides some initial inspiration for users. For example, most direct to my own work, the violin 

doubles as a tool for musical expression and a visual work of art in its own right. Even a 

carpenter’s finer tools often exhibit an aesthetic sense.  

4.1.5 Intuitive to the User 

Users should not be forced to learn to describe manipulations that serve to be convenient for 

computer or mathematical representation. Instead, functional relationships within the 

environment should describe classes of operations which users find expressive. These classes 

can and should be “black boxed.” It is not important that the user understand the low-level 

choices for what mathematical operations describe the sounds they are hearing. Instead, the 

system should be constructed to match as closely as possible the intuitions that non-technical 

users expect when manipulating the blocks, even if this requires classes of functions and 

mathematical mappings of these classes between them. 

SoundBlocks might be more intuitive for users if the blocks can alter their behavior based on the 

configuration of the network. Such a context-aware, adaptive property must be designed with 

care. If blocks are adaptive in an arbitrary way, the environment could appear confusing and 

unpredictable to the user. On the other hand, some sorts of adaptive behavior hardly would 

appear adaptive at all to a user. A delay block, for example, should be able to delay any type of 

data it is given. 

4.1.6 Provides Instantaneous Feedback 

SoundBlocks should respond to both network changes and sensor feedback instantly. Creative 

exploration within the domain of sound requires this instant feedback. It would be nearly 

impossible, for example, to learn to play the piano if the response from the piano were delayed 

and not consistent. Professional musicians, in fact, are typically uncomfortable with digital sound 

environments that respond with more than 10ms delay.  
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4.1.7 Complements audio feedback with visual feedback 

Visual feedback provides both an alternative way to understand the network state and a way to 

capture the description of some properties that can be difficult to describe with audio alone. 

Providing visual feedback can also support another dimension of understanding to the audio 

environment during real-time use. For example, VU meters provide visual feedback so a user 

can easily gauge the amplitude of an audio signal. This type of feedback can be useful for 

understanding the behavior of an environment and can also aid in debugging it. 

4.1.8 Primarily provides children with a means for personal expression through physical 

interaction 

If the environment does not in some way inspire users to create sound in personally meaningful 

ways, they will quickly become bored by it. If this happens, the cycle of learning through design 

and learning through play is broken. The environment might, at best, then become an artificial 

pedagogical tool for understanding digital sound manipulation. Such tools already exist and are 

not the intention for this environment. 

4.1.9 Robust 

The environment is intended for those who may not and should not be required to understand 

anything about digital circuitry or computers. Because of this this, various unpredictable 

situations can occur. If these situations expose error messages and code to the user or require 

the system to restart, they can be very distracting from the intention of the environment. As 

much as possible, error messages should be hidden and code execution should attempt to 

recover from all error conditions. In addition, the hardware should be tolerant of shorts, 

brownouts, and loose connections. 

4.1.10 A physical construction kit 

Some of the inspiration for manipulation of the environment may include its physical 

construction. Therefore the blocks should be easily manipulated physically to assume various 

positions with each other. They should be able to twist and turn around each other. If possible, 

three-dimensional manipulations should be supported. 
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4.1.11 Offers complementary learning in fields other than sound 

Motivation for kids to explore the environment will come from their desire to explore sound 

and to express themselves. However, the environment will be designed to offer as a byproduct 

learning in other areas as well. Natural avenues for this learning include programming, 

understanding data flow and network structures, and mathematics. 
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4.2 First Iteration: Design, Implementation, and Observations 

4.2.1 Design and Implementation 

The first iteration of blocks was intended as an 

experiment of what might be possible and how 

it might be constructed. It consisted of 6 

blocks: 2 pitch shifters, 2 delay blocks, a 

number block, and a host. Each block was 

built around an Atmel TINY15L and included 

a red LED. The blocks used a peer-to-peer 

communication system based on 1-wire 

UART, and could transmit data at 19,200 

baud. They connected to each other with 

telephone jacks, telephone plugs and telephone cords. The block housing was a simple footprint 

which interconnected with standard Lego’s. Python code polled the network for network 

configuration and sensor data. This information was then passed with sockets to Pure Data (Pd), 

a graphical sound synthesis language (Puckette 1997). 

I chose Pd as my sound synthesis language for several reasons. First, Pd is an interpreter not a 

compiler. Therefore it is a straightforward process to dynamically create Pd code (called patches) 

on the fly. What this means is that, while Pd is running a patch I can send it commands to 

extend this patch or write a new patch and the changes will be integrated instantly. This was very 

useful when updating Pd for network configuration changes. Second, the graphical nature of Pd 

allowed me to experiment with the idea of mirroring the physical block world with a virtual 

world on screen. Third, Pd has already been extended to run on PDAs. This meant that, 

perhaps, Pd might provide an easy way to transition away from needing a conventional 

computer in future development. 

In Pd I constructed blocks that mirrored exactly the functions of the blocks I had built. Each 

block had, nested within it, a Pd patch. This type of block construction is analogous to class 

construction in a traditional text-based programming language. When the user looks at the 

 

Figure 23: First iteration Interlocking footprint 
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computer screen, she would see the same blocks as those she had networked together in the 

physical world. 

Choosing where to put the blocks on the screen in Pd turned out not to be trivial. I used a 

springs and masses approach to calculate their position relative to each other. Each block was 

given a mass and would therefore experience gravitational pull toward its neighboring blocks. At 

the same time, each block was repelled from its neighbor blocks by imaginary springs. At start 

time, I would create the virtual world of blocks by placing the blocks randomly. Then I would 

iterate through time periods, moving the blocks as dictated by the laws of physics. When the 

system arrived at a steady-state condition, I considered this the final position of the blocks and 

would send this configuration to Pd. 

The 1-wire UART protocol I used had separate lines for power and signal. Therefore it was 

necessary to have 3 wires connect each block. Telephone cord, plugs and jacks offered the 

cheapest solution by far for providing these connections. It also made for very quick and simple 

construction of cables. Using a crimper, bulk telephone wire, and telephone plugs, I could create 

telephone cables of any size in a matter of seconds. 

Block inputs and outputs appeared to the user as either control data or audio data. This is the 

traditional technique for describing networks of sound synthesis, and is used by Csound, Pd and 

most other sound synthesis languages. Internally to the blocks, no audio data was actually 

present, since the blocks serve only as a tangible interface for the central processing host. 

Instead, audio data is represented within the network as audio-parameter data. 

I constructed four types of blocks: a host block, “type A” blocks, sensor blocks, and a number 

block. A host block converts from standard 2-wire serial communication from a PC to the 1-

wire UART that all other blocks in the system use to communicate. “Type A” blocks consisted 

of two inputs, two outputs and a red LED. Both outputs sent the same data so in a sense it 

would also be accurate to describe each block as consisting of only one output and a built-in Y 

splitter for this output. A type A block represented a standard sound synthesis function. The 

choice to call these blocks type A has no special meaning. Sensor blocks consisted of no inputs, 

two outputs, a red LED and some sort of sensor. They would send to both of their outputs 
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whatever sensor data they were receiving. A number block consisted of no inputs, two outputs, a 

knob, two buttons and a 3-digit 7-segment LED. 

I implemented pitch shift, delay and a mixer all as type A blocks. The pitch shifter’s inputs were 

an audio-parameter signal that the pitch shift would be applied to, and a control rate describing 

how much to pitch shift to apply. The delay block’s inputs were an audio-parameter signal that 

the delay would be applied to, and a control rate describing how much delay to apply. The mixer 

block’s inputs were both audio-parameter signals. Its output would be the sum of the two audio-

parameter signals. 

I created 2 sensor blocks, which were both ultrasonic proximity detectors. These consisted of 

both a transmitter and a receiver. The transmitter would send a 40kHz signal and the receiver 

would measure the number of milliseconds it would take to receive the echo of this signal. It 

would send this number as its sensor data. The sensor blocks had a range between 5cm to 1m. 

I also created a number block. This consisted of a 

potentiometer, 3 seven-segment LED displays, a red 

LED, and two buttons. The user could dial a value 

by turning the potentiometer, and then choose the 

range of this value with one of the two buttons. He 

could choose whether or not the number was 

positive or negative with the other button. For 

example, a user might dial any number between 0 

and 999 with the potentiometer. By pressing the 

range button once, the decimal place on the LED 

display would shift to show 99.9. Pressing the range 

button repeatedly would shift the value to 9.99, then .999, and finally return it to 999. Pressing 

the minus button once would light the red LED that was positioned to the left of the 7-segment 

LED displays and thus appeared like a negative sign. Therefore the value would then read –999. 

Pressing the minus button again would invert the value again, returning it to 999. The number 

block sent the value displayed on its LEDs as its sensor data. 

 
Figure 24: Proximity Block 
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Communication between blocks was peer-to-

peer and included no buffering, even at the byte 

level. This meant that, as a block received data 

from a block connected to its input, it would 

immediately pass this on. A block could directly 

communicate only to its parent block and its 

child blocks. Blocks understood a simple set of 

commands, to allow for realization of the 

network topology and the ability to receive 

sensor data. The commands allowed network 

discovery through depth-first-search, and 

allowed for circular relationships. 

4.2.2 Observations 

Several design choices became clear through development of the first iteration: 

1. Flexible cables are problematic and challenge development in 3 dimensions. The 

telephone wire used in this first iteration meant that any block could be connected to any 

other block. There were no limitations on what could be connected to what from 

proximity or physical location. While this at first might seem like a great and powerful 

situation, the problem is that it also means that relationships are confusing. Too easily 

the system appeared as a jumbled mess of wires instead of an organized and clear 

illustration of network flow. In fact, the 2-dimensional screen representation of the block 

network structure was often clearer than the network structure itself. 

 

Figure 25: First iteration number block 



 

- 52 - 

 

Figure 26: First iteration in testing. Are flexible cables problematic? 

Furthermore, flexible cables cannot support any weight so it is impossible to build a 3-

dimensional structure with the network itself. It was still possible to create a 3-

dimensional structure using Lego’s, since the blocks had form factors that fit with Lego. 

However, this was not intuitive for users as the network had little else to do with Lego in 

its current state of development. 

 

2. A visual virtual representation of the blocks distracts from the purpose and 

exploration of the project. Many people on exploring this first generation of blocks 

became very interested in the mapping between the physical representation they created 

and the virtual representation generated by the computer mapped to their physical 

representation. This is an interesting situation and has been and will continue to be 

explored in other projects. However, for the purposes of understanding and 

manipulating sound it served as a distraction. It put the users’ focus too much on the 

virtual world and what the computer is doing instead of keeping their focus on 

expressive elements with which to manipulate sound. 
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3. 1-color LEDs do not provide enough feedback. The LEDs were too limited in their 

use for debugging to express meaningful information to the user. At best, they showed 

when a block was activated. Beyond this, LED mappings proved counterintuitive to 

users. LED brightness seemed too vague in general to convey meaning, and various 

lighting situations made this even more of a challenge. Beyond this, LEDs could light to 

show errors, extreme changes or areas of range, and none of these mappings proved 

intuitive to users. A user would see the LED do things but have no sense of what the 

mappings might be. 

4. Peer-to-peer networking offers perhaps unnecessary challenges to 

implementation. Although we wish for the user to understand the blocks as having a 

peer-to-peer relationship, actual implementation of this is a challenging task. Peer-to-

peer networks are still a hot topic of research, as traditional solutions offer challenges in 

robustness and can be time consuming to implement. Our own peer-to-peer network 

suffered from continually corrupted data and proved to be very difficult to debug. If 

there were an alternative way to convey the same sort of information that the blocks 

were conveying in their peer-to-peer network, it would be good to examine this. 

5. Requiring more than two-wires between the blocks is limiting.  Because more than 

two wires were necessary to send power and data to and from the blocks, the types of 

connectors necessary to connect blocks together limited the system. For example, 

connectors could not rotate around each other, which would expand the possible 

physical relationships between the blocks. Further, less traditional connectors such as 

magnets would pose challenges with alignment. 

6. Form factor is important. The blocks offered no personality in terms of their shape 

and size. Many users commented on this, and suggested that the blocks might feel more 

playful if they had a more appealing shape and the inner circuitry were more hidden. 

7. A more adaptive system would offer a richer experience, discovering 

understanding through exploration. This first generation offered no significant 

adaptive properties. Only users who already had experience with digital sound 

manipulation found the environment playful. Other users were forced to try to 
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understand digital sound manipulation first before they could get appealing results from 

it. Furthermore, the system did not offer a rich environment. Only the handful of 

networks I had considered when designing the system were interesting. No significant 

new relationships could be discovered. If the blocks had more adaptive properties, a 

richer environment might be possible. 

Most apparent, users had trouble distinguishing between audio and control values. The 

distinction, necessary to create sound within the environment, served as an unnecessary 

distraction which was convenient only for the computer and its functions. 

8. Numbers are not necessary for digital manipulation of sound. While the number 

block was fun and interesting, it became clear from its interaction with the network that 

the actual numbers it was sending were not helpful in the user’s experience for 

manipulating sound. Instead, just as was discovered with the visual virtual representation, 

numbers in the LED display actually distracted the user from focusing on what these 

numbers were actually doing --- changing the audio. What the user needed to be aware 

of was what range of values they were expressing within the system. The actual number 

this represented was unimportant. 

Numbers also put too much focus on the mathematical operations of the environment. 

It might create a fun environment for future engineers, but our intention is to support 

multiple types of learning. We wish to share focus with the expressive elements. 

 

9. User parameters should be as limited as possible while still allowing for a broad 

range of expression. It is powerful and inspiring to consider that users might create 

whatever they wish, limited only by their own imaginations. What can be overlooked in 

this lofty goal is the observation that constraints within a system help to focus users, and 

that infinite possibilities for expression may exist within these constraints. Traditional 

instruments demonstrate this clearly. For example, a violin has a very narrow range for 

dynamics and tonal shapes. In spite of these constraints, it is considered an extremely 

expressive instrument, and its boundaries for personal expression continue to expand 

today, more than 300 years after its invention. 
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Considering this point of view, it became clear that blocks should be limited to as few 

user parameters as possible while still allowing for great personal expression. Other 

parameters should be assumed and/or should change with the user parameters as 

mapped within the design structure of the system. How and what the user parameters 

would map to and how they might be mapped to other internal parameters is a crucial 

component to making the system easy to use, intuitive and powerful for users. 

 

10. Values should be mapped to ranges intuitive to our ear, instead of as might be 

traditionally used in the digital audio field. For example, frequencies are typically 

measured in cycles per second, or Hz. Using this scale, the lowest sound we might hear 

is 20Hz and the highest (for young people) is 20kHz. With this scale, to jump an octave 

requires a jump of only 20Hz at the lowest end of the audio range and a jump of 

10,000Hz at the highest end of the audio range. This logarithmic scale is not intuitive to 

users. Moreover, building a system where a sensor could express a given range of audio 

values would require the user to perform various conversions using mathematical blocks. 

Instead, the system should already internally use mathematical mappings to perform 

these conversions for us. 

11. Values in the network should be internally smoothed. Although a user might create 

networks that quickly shift parameters between various values, the discontinuities in the 

audio, often referred to as “zipper noise,” are unlikely to be a desired audio effect. 

Therefore, all blocks should smooth out value changes to reduce or eliminate this. 

12. Inputs and Outputs must be distinguished. Conventional modular synthesizers have 

the same jacks for their inputs and outputs. This means that two outputs or two inputs 

could be connected to each other. There are some advanced situations where this is a 

powerful concept, and professional users have at times made use of this flexibility. 

Therefore, the first generation of SoundBlocks supported this paradigm; all of its jacks 

were the same and all of the connectors the same on both ends. Unfortunately, users 

often became confused as to what jacks were inputs and what jacks were outputs. This 

lack of a distinction made using the blocks more difficult to explore freely and more 

frustrating, as many connections that physically worked resulted in no sound. If input 
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jacks were purposely different from output jacks, a user would be physically prevented 

from many nonsensical connections. 
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5. SoundBlocks: Final Design 

Based on the eleven principles outlined in section 4.1 and the lessons learned from the first 

iteration of SoundBlocks, I developed the SoundBlocks environment. Much of the low-level work, 

specifically design and implementation of the protocol and physical construction of the blocks, 

was done in partnership with Andrew McPherson. Andrew submitted a thesis on this work 

(McPherson 2005). 

The first half of this chapter looks at the basic structure of SoundBlocks. Section 5.1 examines 

how users perceive SoundBlocks. How do they experience the environment? What do they see? 

What do they hear? Section 5.2 looks at the internal communication between the blocks and the 

computer, necessary for the centralized internal processing structure of the system. Section 5.3 

explains the basic structure of each block and section 5.4 gives a quick overview of the network 

protocol between the blocks. Since the aesthetics of the blocks are important, we look at block 

housing in section 5.5. We discuss the functions and various modes of the LEDs in each block 

in section 5.6. In section 5.7 we examine the structure of the sound synthesis code and how this 

code communicates to other modules within the computer environment. 

We begin the second half of the chapter by examining context-aware behavior of the blocks in 

section 5.8. Section 5.9 defines the exact behavior of each block. Finally, we conclude in section 

5.10 with an analysis rationalizing the decisions specific to each area of implementation.  



 

- 58 - 

5.1 The User’s Perspective of  SoundBlocks 

5.1.1 Interacting with the blocks 

 

Figure 27: Playing with SoundBlocks 

From the user’s perspective, SoundBlocks is currently a set of 14 blocks, each of which can 

generate, manipulate or store sound. Each block has a name intended to appeal to kids and also 

to give some intuition as to what the block does. It also has one output jack, between 0 and 4 

input jacks, and an RGB LED, which can show various shades of light. Some blocks also have 

sensors: buttons, a knob, or a microphone. 

SoundBlocks also includes a computer, speaker, and host circuit, which are placed away and even 

hidden from the user. Ideally the user will ignore these and remain focused on the blocks 

themselves. A long RCA cable runs from the host circuit to the location of the blocks. 
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To form a network, the user begins by attaching a block to the cable connected to the host 

circuit. She then connects blocks to this parent block by selecting among the 9 semi-rigid cables 

of various lengths. She can continue this process, connecting blocks to each other in any way she 

wishes. The resulting network describes a set of sound manipulations. 

Besides manipulating the blocks, a user can also interact with the system using the sensors. As 

the user connects and disconnects blocks, turns knobs, presses buttons or speaks into the 

microphone, he hears the results immediately. At all times the network creates sound as 

determined by the configuration and state of the network and sensors. 

The RGB LEDs show both the state of the block and the flow of the signal in the network. 

When the network is in its default behavior, each block’s LED lights one at a time to show the 

sequence of the network flow. The color of the LED as it lights shows the state of its block. 

When a block’s state changes suddenly and in a potentially significant way, the sequence is 

interrupted so this block’s LED can light and thus show the block’s new current state. 

5.1.2 The user’s experience with the blocks: as instrument, programming language, and 

toy 

Users may experience SoundBlocks in many different ways. In one sense, SoundBlocks is a musical 

instrument. The user designs the instrument by creating the network configuration, then 

performs on it by interacting with the sensors. 

 

Figure 28: Manipulating SoundBlocks 



 

- 60 - 

However, SoundBlocks is also a tangible programming language for sound. The user writes his 

code by creating the network topology. He runs this code, interacts with it using the sensors, and 

observes its behavior by listening to the resulting sound and watching LEDs. If the behavior is 

not what the user expects, he can debug the system with the feedback he has seen and heard. 

And SoundBlocks is also a toy. Users are amused to hear their voice, the voices of their friends, 

and the sounds around them changed in strange and exciting ways. It is easy to create and 

change sound with SoundBlocks, and the manipulations lend themselves to interactive play and 

games. 

5.2 Signal Flow within SoundBlocks 
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To the user, the blocks themselves appear to manipulate the sound itself. In reality, the blocks 

serve only as an interface. A computer discovers the physical network of the blocks, translates 

this physical network to a virtual one using context-aware logic, communicates sensor data from 

the physical network to the virtual one, and relays LED values or other relevant data from the 

virtual network to the physical one. This architecture is implemented as a 5-layer hierarchy, and 

is illustrated in Figure 29. An overview of the hierarchy is as follows: 

1. The blocks themselves are the lowest level of the architecture. They contain assembler 

code used to send values to a host circuit, receive values from this same host circuit, 

control internal state, and aid in network discovery. 

2. At the next level, a host circuit connects the blocks to the computer’s serial port. It 

translates the blocks’ 1-wire power-and-signal protocol to standard UART. (Consistent 

with terminology within the field, we call the protocol 1-wire since power and signal are 

both on one wire. Technically this is a 2-wire protocol, since a ground wire is also 

needed.) 

3. Mid-level Python code in a computer polls the network through the serial port. It sends 

changes in network configuration and sensor values from the blocks, to high-level 

Python code through method calls. It also receives LED values from the high-level 

Python code and passes it to the blocks. All communication is initiated by the mid-level 

Python code, which runs in a continuous loop. This loop polls the blocks for network 

changes and sensor values, and polls Csound via high-level Python code for LED values. 

4. High-level Python code uses context-aware logic to create and/or modify the virtual 

network. It sends this updated network description through a virtual MIDI port to 

Csound.  It also receives information through a virtual MIDI port from Csound 

regarding the current state of the virtual network  

5. At the highest level, Csound, the sound processing language, creates or modifies its 

virtual network and its current state as instructed. It then renders the resulting sound. 
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All communication within the hierarchy is initiated by the mid-level Python code. It runs in a 

continuous loop, polling the network, reading sensor values, and updating LED states. 

Here’s a typical scenario describing how the 5 modules work together. 

1. SoundBlocks is started and no blocks are connected to the network. 

a. The mid-level Python module begins its continuous loop. The loop polls the 

network via the host circuit looking for changes to the network every ¼ second.  

2. A user connects Micky Mic to the host circuit, as shown in 2.1, Figure 3. 

a. Within ¼ second, the mid-level Python code detects the change. It then polls 

network, and discovers Micky Mic. It assigns Micky a polling number and reads 

Micky’s block type, serial number, the number of inputs Micky has and the 

number of dimensions of sensor data Micky reports. It calls the high-level Python 

code with this information. 

b. The high-level Python code determines what Micky Mic’s correct function and 

state should be, given the network configuration. It instructs Csound to create an 

instance of this function by sending Csound a command through the virtual 

MIDI port. It then tells Csound how to configure Csound’s patch bay to 

incorporate the new function. (Micky Mic’s audio signal is sent to the computer’s 

sound card audio input wirelessly.) 

c. Mid-level Python code continues to poll the network for changes every ¼ of a 

second. Since there is now a block in the network, it also initiates another loop 

which updates the LED values of all blocks connected to the network every .1 

seconds. In this example, it will update Micky’s LED value each cycle. The 

procedure is as follows: 

i. Mid-level Python code queries the high-level Python code for the LED 

value. 

ii. High-level Python code sends a command to Csound via the virtual 

MIDI port requesting the LED value. 
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iii. Csound returns the value to the high-level Python code through a 

separate virtual MIDI port 

iv. High-level Python code translates the value if necessary, and sends this 

information back to the mid-level code. It also may signal the mid-level 

Python code if it determines that the block is undergoing rapid state 

change. In this situation, the mid-level Python code will change its 

behavior as explained in section 5.6. 

v. Mid-level Python code sends the LED value to Micky via the host circuit, 

and tells Micky to light its LED 

vi. Under normal circumstances, the mid-level Python code will shut off 

Micky’s LED after .1 second, then repeat this loop. 

 

Figure 30: network demonstrating LED lighting sequence 

3. The user disconnects Micky Mic and attaches the network shown in Figure 30. 

a. The procedure for network discovery, getting LED values and updating LEDs 

will be exactly the same as described with just Micky Mic. In the new 

configuration, when no blocks are undergoing rapid state change, the LED 

sequence shows the data flow within the network. The numbers in Figure 30 
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correspond to the order in which the LEDs will light. The arrows show the data 

flow within the network. 

5.3  Block Details 

SoundBlocks output their signals through a female RCA jack and input their signals through DC 

male jacks. Stiff connectors with an RCA plug on one side and a DC plug on the other allows 

users to connect blocks to each other. 

A block may optionally have sensors. These sensors can be anything which connects the block 

to the external world, including a set of buttons, a potentiometer, a digital encoder, or any type 

of standard sensor such as gyroscope, accelerometer, light sensor, or ultrasonic proximity 

detector. It can transmit up to four dimensions of sensor data. The RGB in each block is 

capable of showing any combination of shades between two LED colors at a particular time. 

Internally, the Atmel TINY2313 microcontroller of each block stores a type number describing 

the block’s intended class of functions. It also contains a four-byte serial number, the number of 

inputs the block has, and the number of dimensions of data provided by the sensors. Assembler 

code in the microcontroller of each block is mostly generic: the same code is largely used for 

every block, independent of a block’s type, serial number, number of inputs, and number of 

sensors. The code supports methods to read the block’s various attributes, as well as commands 

to both control and read in the block’s internal state. A few bytes in the microcontroller’s 

EEPROM store the unique information for the block, and the generic code references this. 

Most of the assembler code, however, is in support of the 1-wire network protocol which fully 

describes all network communication and is described in section 5.4. 

5.4 Network Description and Protocol 

The network description in SoundBlocks was realized specifically for this project. It developed in 

discussions between MEng student Andew McPherson and I. Andrew realized the protocol, 

developed all of the code and circuitry to support it, designed the blocks for the developed 

protocol, and wrote his MEng thesis on this work (McPherson 2005). Only a cursory description 

of the network is provided here, as a full description of it with complete documentation of all 

commands and the supporting assembler code for them is available in his thesis. 
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Figure 31: Network protocol (courtesy Andrew McPherson) 

The network protocol provides clock, signal, and power all on wire, and supports a 57,600 baud 

communication speed. Although the network is implemented as host-slave, it appears to the user 

as peer-to-peer and is easiest to describe using parent-child terminology. The host connects 

directly to a computer through the serial port. All blocks are slaves. Each block contains a switch 

to control each of its inputs. The switch allows the block to control whether the child connected 

to its input has a direct connection to the host (open) or a filter signal of power only (closed).  
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When a block is initially plugged into the network, its switches default to the closed position. 

The host polls the network with a polling ID. Since all switches are closed in the root block, only 

this root block will respond to the poll. The host assigns the root block an ID number and 

requests that it open its first switch. The host polls the network again. The root block knows to 

ignore this polling request, as it has already been assigned a block ID for the currently polling 

ID. However, if there is a child attached to this first switch of the root block, it will see the poll 

for the first time and respond. The child is then assigned ID and instructed to turn it’s first 

switch on. This depth-first-search process continues until the entire network is discovered. 

At the end of network discovery, each block will have a temporary ID assigned which the 

computer uses to monitor and control a block’s various states. For example, the host uses these 

IDs to control individual blocks’ switches, to monitor data from sensors integrated into the 

blocks, and to set LED hue. There are also commands that quickly detect network changes or 

discover if any blocks contain unread data. The protocol allows these commands to send and 

receive data from all blocks at once, so it is not necessary to poll each block individually for this 

information. 

 

Figure 32: Slave device switches (courtesy Andrew McPherson) 
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5.5 Block Housing 

Each block was housed in one of two types of casings, to see what might appeal most to 

children. The first casing was a pre-manufactured, light-weight, malleable playground ball of 

about 3.25” in diameter. We sliced the balls open, placed the circuits inside, cut holes for the 

connectors, then hot-glued them back shut. Because the balls were not intended for electronics, 

the process was a bit laborious. Moreover, the balls did not have a sturdy exterior. However, 

they did have a playful, simple element to them that we thought children might find appealing. 

I designed the second casing using the open-source Blender 3D CAD/CAM software and the 

Media Lab’s shop in the basement. The case was two pieces: a bottom and a covering. The 

bottom was a simple laser-cut base. The covering was transparent, made of PetG from a plaster 

mold. Because the casing was designed with the specific circuit boards in mind, assembly was 

quick and easy. After the circuit board and connectors were put in place, the top and bottom 

screwed together with two screws. 

Because the second casing was transparent, users could see all of the electronics inside the 

blocks. Also, this second case had a more complicated shape to it, was slightly smaller, and did 

not roll. These differences were intentional, as I was curious how different types of learners 

would take to these various aspects in the user studies. 

5.6 LEDs and Rapid State Change 

Mid-level Python code monitors and controls when and what hue each of the LEDs in the 

network lights. The code supports multiple modes of operation. The high-level Python code 

signals to the mid-level code if there should be a mode change and, if so, what blocks are 

causing the change. The modes are hierarchical, arranged by priority. 

Currently two modes of operation have been implemented: 

1. The code defaults to mode 3, which is the lowest priority mode. It remains in this mode 

unless signaled by the high-level Python code to override this mode by switching to 

mode 2. 
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2. Mode 2 indicates that high-priority LED updates are needed for individual blocks in 

rapid state change. 

To control operation in each of the modes, the mid-level code maintains two lists. The first is a 

list of blocks arranged to represent the signal flow between the blocks. The network in Figure 8, 

for example, would generate the following list: Micky Mic, Polly’s PitchShift Parlor, Dorothy Delay’s 

Den, Wild ‘N Random Pitch ‘R Number, Smooth Slider, Polly’s PitchShift Parlor, Dorothy Delay’s Den. 

This is also discussed in section 5.2. The second is a list of blocks in mode 2 operation. 

In mode 3, the code cycles through the list describing signal flow at a rate of 5 blocks each 

second. It lights each block’s LED one at a time, showing each block’s current state by the LED 

hue. In this way, the default mode of operation shows signal flow and the relative internal state 

of each block to the user. 

As explained in section 5.2, the high-level Python code is called every time the mid-level Python 

code needs to update a LED value for a block. The high-level Python code receives the value by 

polling Csound, then remaps it and evaluates whether or not the block should be switched to 

mode 2 operation. If so, it signals the block number to the mid-level Python code as mode 2. To 

keep power consumption within the network minimal, a maximum of two blocks can be mode 2 

at a given time. If a 3rd block claims mode 2 operation, it is ignored. 

If one or more blocks is marked for mode 2 operation, mode 3 operation is suspended. Instead, 

the LEDs for the mode 2 blocks are lit continuously, and their hues are updated every 3/100s of 

a second. With each update, the high-level Python code determines if the block’s mode should 

be switched back to mode 3. 

Mode 2 offers a way for users to get instant visual feedback when changing the internal state of a 

specific block. For example, if the microphone block is connected, it will shift to mode 2 if 

Csound detects active audio input. In this way, the LED color gives immediate feedback as to 

the amplitude of the signal the microphone is picking up. Similarly, a Pitch ‘R Number block 

switches to mode 2 when its values are changing, i.e. when the user is turning its knob. Then the 

user can see the LED lights of the Pitch ‘R Number block change in exact correspondence with 

the potentiometer or rotary encoder. 
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5.7 Csound, High-level Python Code, and the Virtual Patch Bay 

Csound and the high-level Python code communicate to each other using a virtual MIDI port. 

However, the data they communicate to each other in no way resembles the MIDI specification. 

Commands from Python to Csound followed a unique protocol designed specifically for this 

project. The commands consisted of up to three bytes, and allowed for up to 5 parameters for 

each command. They followed the following format: 

Byte 1:  0xc0  [command]  [parameter 1] 
Byte 2:  0xb0  [parameter 2]  [parameter 3] 
Byte 3: 0xa0  [parameter 4]  [parameter 5] 

 

Csound is a compiled language. Csound run time is called performance time, since Csound is 

intended for music performance. Csound code primarily consists of an orchestra, and the 

orchestra is composed primarily of instruments. In some sense, orchestra is Csound terminology 

for code, and instruments is Csound terminology for classes of functions. Typically, the 

programmer specifies the classes, the instances of these classes, and how the instances 

communicate to each other at compile time, not performance time. 

While it is straightforward to create instances of classes within the orchestra itself at 

performance time, the inherent Csound architecture does not support an infrastructure for how 

these instances might then be told how to communicate to each other. I wrote code to support 

this infrastructure, a virtual patch bay, within Csound. 

The virtual patch bay supports dynamically creating and destroying functions and manipulating 

how these functions connect to each other, all at performance time. This gives Csound a 

capability previously considered possible only in Max/MSP and Pd. I know of no other 

examples where this has been done before in Csound. The implications for what this might 

allow for Csound in the future are significant. 

Specifically within SoundBlocks, the virtual patch bay enables Python to instruct Csound to create 

instances, delete instances, connect and disconnect instances to each other, and send values to 

Python from instances. This is implemented using the virtual MIDI port. 
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The virtual patch bay relies on the notion of an instance number, which is similar in concept to a 

handle. When high-level Python code signals for Csound to create an instance, it also assigns 

Csound an instance number for that instance. The instance number is uniquely defined and gives 

both Csound and Python a way to identify this instance. Csound uses the instance number to 

maintain a set of arrays (called ftables in Csound) whose indices are uniquely defined by the 

instance numbers. These indices keep track of specific parameters for each of the instances. For 

example, an instance will read its input values from a specific and unique set of indices stored in 

an ftable called giInArray. It will write its output values to a specified location, and this location 

is determined by a unique set of indices stored in an ftable called giOutArray. 

5.8 Context-aware Behavior in the High-level Python Code 

The high-level Python code makes decisions regarding what a block’s specific function is, what 

its state is, and what its default values are. These are determined based on the configuration of 

the network, so they are context-dependent. The intention is that the blocks might then be more 

intuitive and more powerful for users. I outline the specifics of what was done and the benefits 

it had for the system below: 

5.8.1 There is no distinction between audio data and control data in SoundBlocks 

When designing his Music 11 sound synthesis language, Barry Vercoe established the distinction 

between audio data and control data (Vercoe 2005). This distinction, and the sampling rate and 

control rate terminology associated with them, continues to be the framework for all audio-

processing languages. It is a powerful distinction for low-level processing. However, it remains 

confusing and problematic for inexperienced users and partially contributes to the steep learning 

curve associated with sound-processing languages. Indeed it is a major reason why most 

networks in sound processing languages will in general not create audible or sensible output. 

Even advanced users spend considerable effort converting between control parameters and 

audio parameters, sharing data between them, and choosing the appropriate primitive for the 

given type of data. In short, the framework distinguishing audio data from control data 

significantly contributes to the barriers that make sound design inaccessible to many people.  

The high-level Python code in SoundBlocks eliminates the distinction between these two types of 

data for the user. It does this through a context-aware translation. The user is free to create high-
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level physical network constructions that do not specify data types. The code translates these 

into low-level virtual network constructions which do specify data types and which Csound can 

process directly. This mapping interprets what types of data to use where in the network, as a 

function of the configuration of the blocks. To understand what this means and how it was 

done, it is important to understand the distinctions between the two types of data. 

5.8.1.1 Definitions: Audio Data, Control Data, Audio Sampling Rate, Control Sampling Rate 

 

Figure 33: A 3mS of human speech as 150 audio data points 

Since digital computers cannot manipulate continuous streams of data, audio must be converted 

to a steady stream of numbers i.e. digital audio data, before a computer can manipulate it. An 

analog-to-digital converter converts analog audio signals to digital audio data by taking snapshots 

of the continuous stream of audio at a fixed frequency of time --- the audio sampling frequency. 

Compact-disc-quality sound uses an audio sampling frequency of 44,100. This means it takes 

44,100 snapshots for each second of audio and, thus generates 44,100 numbers to represent 1 

second of CD-quality sound. Figure 33 shows 3mS of a digitized audio capturing a female voice 

at CD audio sampling rates. 
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Control data (interchangeably called parameter data) is a higher-level data type. It does not 

describe the raw audio. Instead it describes how the audio might be generated, altered, or 

manipulated by a function. For example, if we wished to reduce the pitch of the audio in Figure 

33 by ½, we might send both the audio data and ½ as control data to a predefined function 

called “pitch.” Pitch would return audio data as a result of this manipulation. In audio processing 

languages we can even change control data such as pitch continuously. The speed at which we 

send this stream of control data is typically fixed and called the control sampling rate.  

5.8.1.2 Interchanging data in a typical sound processing environment 

 

Figure 34: ½ as audio data --- DC offset 

Since audio data describes what to manipulate and control data describes how to manipulate it, 

the two typically cannot be interchanged meaningfully. In our example, if we were to send ½ as 

audio data instead of control data, we would effectively have added a DC offset to the signal. At 

best we might he hear a click, then nothing. Figure 34 shows the corresponding signal. Similarly, 

sending the audio data of Figure 33 to a pitch function with some arbitrary audio signal would 

most likely create an unintelligible result. This is why most audio synthesis languages will not 
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even allow such a direct conversion. The two data types have different sampling rates and 

different meanings. They are not to be used interchangeably. 

5.8.1.3 Interchanging data in SoundBlocks 

Internally within Soundblocks, each block can poll its output to determine whether the parent 

block it is connected to is expecting audio data or control data. The block may then define its 

behavior, send an output appropriate for the given data type, and change the expected data types 

for its own inputs based on this information. We can illustrate the pitch shifting scenario 

discussed above within SoundBlocks using Pitch ‘R Number, Polly’s PitchShift Parlor, and The Sample 

Maker. 

 

Figure 35: Pitch shifting audio from the Sample Maker 

Consider a scenario where The Sample Maker has the stored audio and The Pitch ‘R Number block 

has a value by which we wish to pitch shift this audio. We could duplicate the exact 

configuration described in section 5.8.1.1 by connecting The Sample Maker to Polly’s “what” input 

and Pitch ‘R Number to Polly’s “how” input. This is shown in Figure 35. In this configuration, Polly 

will accept a parameter input from Pitch ‘R Number to pitch shift the audio in The Sample Maker. 
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Figure 36: Pitch shifting Pitch 'R Number 

What if, however, we switch Polly’s inputs? Now Pitch ‘R Number is connected to Polly’s “what” 

input and The Sample Maker is connect to Polly’s “how” input, as shown in Figure 36. If the 

blocks were not context aware, this would be the equivalent of trying to pitch shift an audio 

signal described by one number and using audio data to do it. As discussed in section 5.8.1.2, 

this would likely produce no audio whatsoever or worse, cause an error. 

With this new configuration using the context-aware SoundBlocks, Pitch ‘R Number detects that is 

connected to a block that is expecting audio data. Instead of outputting a number representing 

its parameter data like it had previously, it now switches its output to audio data of a square 

wave with a frequency that represents the number it was previously sending. The Sample Maker 

makes the opposite change. Detecting that its parent block Polly is now expecting it to send 

parameter data, it begins to output parameter values corresponding to the RMS amplitude of the 

audio signal it was previously sending. Therefore, the user will hear a square wave whose 

frequency changes as a function of the volume of the audio signal. The context-dependent 

behavior is completely transparent to the user. If the context-dependent mappings specific to 

the blocks are well designed, the user will perhaps find the blocks both intuitive and consistent 

in their behavior. Moreover, she will find them more powerful, flexible, easier to understand, 

and easier to manipulate than in a standard audio processing language. She does not need to 
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wrestle with incompatible data types and their corresponding sampling speeds. Also, a greatly 

expanded number of networks suddenly become possible within a limited set of blocks. 

5.8.2 Support default values, default states, and default behavior based on neighbor 

blocks 

Besides being able to poll their outputs as described above, blocks also poll their inputs to 

determine whether or not a block was connected to them and, if so, what type of block it is. It 

uses this information to assume default values, default states, and default behavior. One example 

of this is the Robot Combiner Diner block. 

The Robot Combiner Diner functions within the system as a vocoder with two inputs for audio 

data. It interprets one input as the carrier signal and the other as the formant. Its output is a 

cross-synthesis of the two with the RMS amplitude of the formant. This operation is commonly 

used to create robotic-sounding voices in popular music. Although it is not straightforward to 

explain how it works to a child or what a carrier and formant wave is, it is nonetheless a 

powerful tool which children could find potentially expressive. The challenge is to give the child 

the expressive power of this tool while at the same time making it easy for the child to both use 

the block effectively and understand the block’s behavior.  

To address this challenge, I designed the Robot Combiner Diner with both a default formant wave 

(a voice explaining a bit about the block) and default carrier wave (a metallic, consistent sound.) 

If no blocks are connected to its inputs, the Robot Combiner Diner defaults to cross-synthesizing 

its two default waves. If one block is connected to its input, it queries for the type of block and 

makes its best guess as to whether the connected block is a formant or a carrier wave. If Micky 

Mic has been attached to one of its inputs, for example, the microphone’s signal is probably 

intended to be a formant wave. Most likely the user wants to hear his voice or a sound around 

him cross-synthesized with the default carrier wave. If, however, a Pitch ‘R Number block is 

connected instead of Micky Mic, the user probably wants Pitch ‘R Number’s square wave as a 

carrier to the default speech formant. 

When two blocks are connected to the Robot Combiner Diner’s inputs, the Combiner queries both 

blocks for block type and again makes its best guess as to what the user intends, assigning one to 

the formant wave and the other to the carrier wave. For example, if both Pitch ‘R Number and The 
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Sample Maker are connected to Robot Combiner’s inputs, Pitch ‘R Number is assumed to be sending 

the carrier wave and The Sample Maker is assumed to be sending the formant wave. If Pitch ‘R 

Number is then disconnected, Robot Combiner will then use its default internal carrier wave while 

still using The Sample Maker’s output as the formant wave. If Micky Mic is now attached where 

Pitch ‘R Number is, The Robot Combiner will assume the microphone to be the formant wave and 

reassign The Sample Maker’s output to be the carrier wave. 

The adaptive behavior of The Robot Combiner eliminates the need for the user to understand or 

even know that there is a distinction between formant waves and carrier waves. The user does 

not even have to be concerned with which inputs of The Robot Combiner they plug their blocks 

into, as the combiner switches the inputs as it determines is best. Although I put much thought 

in determining which blocks would likely be used as formants and which blocks would be used 

as carriers, it is worth noting that it is impossible always to know what the user intends only by 

looking at the block configuration. There may be situations in which the system will guess 

incorrectly. For example, the user might be at the beach and wish to use the sound of the waves 

as picked up from the microphone as the carrier for a pre-recorded sample in The Sample Maker. 

I imagine these situations to be rare and believe that the added flexibility and usability of the 

system as provided by this adaptive behavior more than offsets this loss of user control for the 

intended audience. 

5.9 Specific Block Functions 

5.9.1 Blocks that Generate Sounds and Values 

 
1. Micky Microphone: 

• General function: send microphone data 

• Sensors: 1 - audio microphone 

• Inputs: 0 

• Output: 

o if parent requests audio data: audio from microphone 

o if parent requests control data: RMS of audio 

• LED: shows RMS of audio 
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• Mode 2: triggered while RMS of audio exceeds threshold 

 

2. Pitch ‘R Number 

• General function: generate a square wave or send a number 

• Sensors: 1 – potentiometer. 

o Turning the potentiometer clockwise sends higher values 

o Turning the potentiometer counterclockwise sends lower values 

• Inputs: 0 

• Output: 

o If parent requests audio data: square wave of frequency corresponding to the 

value represented by the potentiometer. 

o If parent requests control data: value represented by the potentiometer. 

• LED: value represented by the potentiometer. 

• Mode 2: when value is changing (user is turning the knob). 

• Note: there were 2 of these in the set 

 

3. Wild ‘N Random Pitch ‘R Number 

• General function: send random values at a steady speed 

• Sensors: 0 

• Inputs: 1 

o Purpose: speed at which to generate random values 

o Type: control 

o Default value: .25 seconds 

• Output: 

o If parent requests audio data: square wave of frequency corresponding to 

current generated random value. 

o If parent requests control data: current generated random value. 

• LED: current generated random value. 

• Mode 2: never 

• Note: there were 2 of these in the set 
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5.9.2 Blocks that are Mathematic Manipulations 

4. Average (But Not Boring) 

• General function: average out its input values 

• Sensors: 0 

• Inputs: 4 

o All inputs are identical 

o Purpose: value to average with the other inputs 

o Type: control 

o Default: none. If no block is connected to an input, that input is ignored and 

not averaged into the final result. If no blocks are connected, the result is the 

exact middle of the range of values allowed (128). 

• Output: 

o If parent requests audio data: square wave of frequency corresponding to 

average of the inputs. 

o If parent requests control data: average of the inputs 

• LED: average of the inputs 

• Mode 2: never 

 

5. Smooth Slider 

• General function: exponentially interpolate between its stored value and the input 

value over a specified amount of time. Stored value is continually updated by the 

interpolation. 

• Sensors: 0 

• Inputs: 2 

o “What” input: 

� Purpose: provide a value to exponentially interpolate toward 

� Type: control 

� Default: Middle of the range of possible values (128) 

o “How” input: 
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� Purpose: specify how much time to make it ½ way to the desired 

value 

� Type: control 

� Default: .25 seconds 

• Output: 

o If parent requests audio data: square wave with frequency corresponding to 

stored value. 

o If parent request control data: stored value. 

• LED: stored value 

• Mode 2: never 

  

6. Hold 

• General function: send stored value. Update stored value with input only when 

button is pressed. 

• Sensors: 1 – button 

• Inputs: 1 

o Purpose: provide value to update stored value. 

o Type: control 

o Default:  Middle of the range of possible values (128) 

• Output: 

o If parent requests audio data: square wave with frequency corresponding to 

stored value. 

o If parent request control data: stored value. 

• LED: stored value 

• Mode 2: never 

 

5.9.3 Blocks that Manipulate pre-existing Audio (named after places and rooms)  

7. Dorothy Delay’s Den 

• General function: delay a signal 

• Sensors: 0 
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• Inputs: 2 

o “Signal” input: 

� Purpose: provides signal which is to be delayed 

� Type:  

• Audio data if parent block expects audio data 

• Control data if parent block expects control data 

o  “How” input: 

� Purpose: accepts a control parameter specifying delay time from 0 to 

2.5 seconds. 

� Type: Control data 

� Default value: 1.2 seconds 

• Output: Delayed signal 

• LED: 

o If input is control: value of input 

o If input is audio: RMS of input 

• Mode 2: never 

 

8. Robotic Combiner Diner 

• General function: phase vocoder. Cross synthesizes the inputs, and returns the 

resulting signal with amplitude of the formant signal. 

• Sensors: 0 

• Inputs 2: 

o Both inputs appear identical to the user 

o Purpose: carrier and formant waves 

o Type: audio data 

o Internally, chooses formant and carrier based on input blocks connected to 

it. (See section 5.8.2) 

o Has default formant and carrier waves 

• Output: 

o If parent requests audio data: audio from cross synthesis 

o If parent requests control data: RMS of audio from cross synthesis 
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• LED: RMS of cross synthesis  

• Mode 2: never 

 

9. Polly’s PitchShift Parlor 

• General function: pitch shift to a maximum of 1 octave up or down, using phase 

vocoder 

• Sensors: 0 

• Inputs: 2 

o “What” input: 

� Purpose: accepts signal to pitch shift 

� Type: Audio data 

o “How” input: 

� Purpose: accepts parameter specifying amount of pitch shift 

� Type: Control data 

� Default: No pitch shift 

• Output: 

o If parent requests audio data: audio of resulting pitch shift 

o If parent requests control data: RMS of audio of resulting pitch shift 

• LED: RMS of audio of resulting pitch shift 

• Mode 2: never 

 

10. Volume 

• General function: set volume of audio 

• Sensors: 0 

• Inputs: 2 

o “What” input: 

� Purpose: provide signal for volume adjust 

� Type: audio 

o “How” input: 

� Purpose: provide parameter for volume adjust 

� Type: control 
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� Default: 1 

• Output: 

o If parent requests audio data: audio 

o If parent requests control data: RMS of audio 

• LED: RMS of audio 

• Mode 2: never 

 

Special Function Blocks 

 

11. Chris the Speaker 

Chris the Speaker is not actually a block but the name of the RCA cable that comes out of 

the host circuit. It functions as the root of the network. All network flow must 

eventually terminate in Chris the Speaker. This cable expects audio-parameter data in its 

“what” input. (The name “Chris” does not have a special significance, except that it is 

politically correct since it is gender-neutral. Recall from section 4.2.1 that audio-

parameter data is data which appears to be an audio signal to the user but internally to 

the system is parameter data signifying audio.) 

 

12. Ask Me 

The Ask Me block is a helper block that can be used as a dictionary to explain the other 

blocks. To avoid confusing the user, this block will function only when connected 

directly to Chris the Speaker. If plugged in elsewhere, the system says “I can help you only 

when connected directly to Chris.” 

 

When the user plugs the Ask Me block into Chris, SoundBlocks says, “plug a block in and 

I’ll have it tell you how it works.” The user can then plug any block in and will get a very 

short story/explanation about what the block does and how it might be used in the 

network. 

 

 

13. The Sample Maker (See Figure 9). 
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The Sample Maker functions as a digital recorder and sampler. It can record up to 16 

samples of a total of 6 minutes in length. In normal operation, the sampler has two 

inputs: “speed” is on the left and “trigger” in on the right. “Speed” sets the sampling rate 

of playback. “Trigger” triggers a sample based on changes of value from the input block.  

 

Internally, the sampler assigns each sample a range of values. When it receives a new 

value from the trigger input, it plays the sample assigned to the range corresponding to 

the new value. For example, if two samples have been recorded, the sampler assigns 

values 0-127 to the first sample and 128-255 to the second sample. At some point, a 

block connected to the trigger input might send a new value. In this example, if the new 

value is below 128, the first sample will be played. Otherwise the second sample will be 

played. The sample will be played to completion unless a new sample is triggered, in 

which case the original sample is stopped and then the new sample starts. 

 

The Sample Maker has 5 buttons to support recording and reviewing samples: “record,” 

“play,” “delete,” “undo,” and “random samples.” To record samples, the Sample Maker 

must be the first block connected to the network and no blocks can be connected to the 

“trigger” input. This is an intentional constraint to make operation more understandable 

to the user. If it weren’t the case, it could be confusing for users because samples could 

be triggered while the user is trying to record samples. 

  

Before recording, the user connects The Sample Maker to a block whose output she 

wishes to record. (See Figure 9). Typically, this might be Micky Microphone. She then 

presses “record” and records the sample. She hits “record” again to stop recording. The 

recording is automatically normalized and beginning silences are chopped off. 

 

The Sample Maker maintains internally a list of all of the samples which have been 

recorded, and a pointer to a current sample within this list. The user can cycle through 

the samples one at a time by pressing “play.” She can delete and add samples anywhere 

in the list with the “delete” and “record” buttons. There is also an “undo” button which 

can undo the last operation. If a user presses “undo” after hitting the “delete” button, 
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the sample will be restored. If a user pressed “undo” after hitting the “play” button, the 

sampler will step backwards through the sample list. 

 

Last, if the user is not feeling especially creative, she can hit the “random samples” 

button. This will record a random sample into the Sample Maker from a list of 

interesting and varied sounds internal to the system. 

 

If The Sample Maker is not the first block in the network and no blocks are connected to 

its trigger input, it will cycle through all of its recorded samples, one at a time. 

 

Since The Sample Maker is a more complex block for the user, recorded voice files explain 

mistakes to the user. For example, if a user presses a button when the Sample Maker is 

not the first block in the network, a voice will respond “my buttons work only when I 

am directly connected to Chris.” 

 

5.10 Rationale for Implementation 

5.10.1 The blocks are simple. All processing happens in a Central Processing Engine 

Internally, SoundBlocks act as a tangible interface to a central processing engine. To the user, 

however, the blocks appear to perform the audio functions themselves. This is the same 

paradigm used in the first generation of SoundBlocks. It offers several advantages when compared 

with the more obvious choice to have the audio processing calculated within each block itself. 

These advantages include expense, flexibility, and adaptive behavior, and they are outlined 

below. 

5.10.1.1 Avoid an expensive DSP in each block 

Blocks will each need a microcontroller to support the basic functions needed within the blocks. 

However, we wish to keep the microcontroller as simple and inexpensive as possible. 

Unfortunately, digital audio processing is computationally demanding and is not possible in real-

time using a simple microcontroller, even for mediocre audio quality. Real time manipulation 

requires a specialized Digital Signal Processing (DSP) chip. And, because of its specialized nature 
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and powerful number crunching capabilities, a DSP chip is significantly more expensive than a 

simple microcontroller. If audio digital processing were to happen in each block, the cost of 

using a DSP over using a simple microcontroller scales the price of parts for each block by a 

factor of 10. With multiple blocks involved, it would not be possible to keep the product 

affordable. 

5.10.1.2 Avoid an unnecessarily complex and expensive high-speed network infrastructure 

Necessitating digital audio processing within the blocks also adds expense to the network 

infrastructure. If the blocks manipulate the audio, the network must support high-speed audio 

data transmission rates. High-speed transmission adds complexity and therefore expense. 

5.10.1.3 Make the system design as flexible as possible 

If each block were hard coded to perform a specific audio function, flexibility iterating the 

design of the system becomes more difficult. Every time a block function needs to be tweaked 

or a specific function needs to be rewritten or replaced, the block has to be opened and its 

microcontroller reprogrammed. Additionally, code on specific blocks could be challenging to 

debug, as each block would not have a supporting debugging environment complete with 

screen, keyboard, mouse and a windowing environment in which to explore the code and its 

behavior. 

By keeping the processing outside of the blocks, each block need only store a device type, serial 

number, and generic code. The device type and serial number uniquely describe the block and its 

function. The generic code supports the network infrastructure and various sensors that might 

be integrated to it. 

In this scenario, all of the blocks can be programmed essentially to be exactly the same. Also, 

since no processing happens within the block itself, it is easy to change the entire behavior of the 

system just by changing the centralized engine. In fact, by only changing the engine it is 

completely possible that SoundBlocks could become VideoBlocks or TangibleBlocks, used to 

manipulate video or any other type of tangible network a designer would wish to construct.  
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5.10.1.4 Make the environment as adaptive to the user as possible 

For a system to make the best choices of adaptive behavior within a network, the system will 

need both representation and control of the entire network itself. This is most practically done 

with a centralized network. If each block attempts to control its own adaptive behavior but no 

one system is controlling the overall adaptive response of the network, the possibilities for 

adaptive behavior are limited or become unnecessarily complex.  

5.10.2 Csound 

Barry Vercoe has recently ported a version of Csound called Extended Csound (XTCsound) to 

the ADI Blackfin on a UCLinux host. This port shows great potential for future development 

with SoundBlocks. The Blackfin is a relatively inexpensive DSP and can be operated on batteries. 

It is easy to imagine a system where all central processing is supported on a Blackfin running 

XTCsound and supporting multiple channels of audio, each being digitally manipulated 

independently. 

While Pd is also an excellent choice and has also been ported to portable platforms, the final 

iteration of SoundBlocks does not use Pd. As pointed out earlier, the visual elements of Pd are not 

necessary and can be, in fact, distracting to users. Pd can be operated without its GUI, but much 

of the advantages it previously offered are then lost. 

Because Pd is interpreted instead of compiled, patches can be created, destroyed, and routed on 

the fly in performance time. At first it appeared that Csound, a compiled language, would not be 

able to also support this important functionality. However, it is possible to maintain a complete 

virtual instrument and patchbay system within Csound without any recompiling. SoundBlocks 

demonstrates the first such virtual patchbay implemented in Csound of which I am aware. This 

seems like a unique use of Csound and also suggests great possibilities for how Csound might be 

used in the future. 

Csound, in active development since 1985, supports a rich set of opcodes, which makes 

prototyping rather complex audio manipulation algorithms relatively easy. Furthermore, some 

have suggested that Csound draws less CPU than Pd given the same set of manipulations, since 

Csound is compiled and Pd is interpreted. This has not been verified. 
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6. SoundScratch 

6.1 Design Guidelines 

We considered many possible designs when evaluating how to integrate digital sound 

manipulation into Scratch. Below is a list of the principals that guided the final design 

6.1.1 Focus on the procedural elements, not the data elements 

Scratch, influenced by LOGO, is a procedural language. Users write scripts by interlocking blocks 

together. From the user’s perspective, the blocks do not send messages to each other. Rather, 

each block is executed, one at a time. Contrasting this, low level digital sound manipulation is 

usually described as a network of operations which each send data to each other. Indeed 

advanced users find a great deal of power in manipulating the connections between these 

operations. But this power comes at a cost. Figure 37 shows how even simple sound 

manipulations can create network relationships that seem complex and difficult to understand. 

This patch is an algorithmic note generator that I wrote. 
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While there is power and flexibility in allowing any possible data flow to be expressed, most data 

connections do not make sense. The good news is that, for a typical set of operations, a standard 

data flow can be predicted. Therefore, it is not necessary, and may perhaps be a hindrance, for 

beginning users who wish to digitally manipulate sound to have to also describe the relationships 

between the various sound operations. Dataflow descriptive networks are also not a currently 

supported framework in Scratch, and adding this framework clouds the streamlined focus Scratch 

currently provides to help users get started using Scratch. 

Therefore, in SoundScratch the data flow has been hard-coded, hidden, and cannot be changed by 

the user. The order of blocks only changes the order of when values are set, not the order of 

when the manipulations are processed. As an example, reverb is always processed within the 

system after the high pass filter. This is the case independent of the order in which the blocks 

are executed. 

 

Figure 37: An Example Patch in Pd 
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Figure 38: High-pass will be processed first in both of these configurations 

In Figure 38 execution of the first and second block configuration will be almost identical. In the 

first case, the high pass filter will receive the value 10, then reverb will receive the value 10. In 

the second case, first the reverb will receive the value 10, then the high pass filter will receive the 

value 10. In both cases, however, the high pass filter will process the audio data before reverb, 

because this is hard-coded within the system and cannot be changed by the user. The choices for 

the order in which audio data is processed were based on common practice. For example, most 

audio networks, like SoundScratch, process reverb as their last operation before the resulting 

output. 

6.1.2 Make it easy to create data manipulations that are familiar to youth. 

Certain digital audio effects are very common in popular music. These include scratching, 

stuttering, echo and reverb effects. Blocks need to support functions that lend themselves to 

writing scripts to create these effects. These effects may be the first manipulations that youth 

will try. If the system can support these effects, the youth may then explore the system further to 

discover new and unique manipulations that are personal and meaningful to them.  

6.1.3 Support all effects in real-time 

So youth can interact with the effects as both performer and designer, the system must support 

real-time manipulation of all audio. This means that the user should be able to apply any 

combination of effects to audio that is streaming in real-time and then hear the result with 

minimal latency. This use is demonstrated in Figure 19 and Figure 20. 

6.1.4 Do what the user probably intends, not literally what the primitive means 

Audio manipulations, such as pitch shifting or band-pass filtering are rarely applied directly 

without various smoothing and compensation operations. Without these operations, results may 

not be what the user intended. For example, consider the following script: 
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Figure 39: A Fade Out? 

In most cases, the user actually intends a 10 second fadeout of the selected sound, starting 30 

seconds into it. If volume were to be interpreted literally, however, the user would hear a click 

every .1 seconds as the volume were suddenly changed. This clicking, often called “zipper 

noise,” is a common unintended artifact in digital sound manipulation. However, SoundScratch 

will not process the volume changes suddenly. Instead, it will smooth out these changes. The 

result will be what we guess the user intended. 

As another example, consider the script for high-pass filtering in Figure 40: 

 

Figure 40: High pass without compensation? 

If a high-pass filter were applied without readjusting the RMS of the audio after the filter, Figure 

40 would result in a gradual fade of the audio itself, and would also suffer from zipper noise. We 

eliminate the zipper noise by smoothing the changes applied to the filter as we also did in Figure 

39. Still, the lows will be gradually removed, but the highs will not be accentuated to 

compensate. This is unlikely to be what the user wants. Therefore, we readjust the RMS of the 
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resulting signal to be equivalent to the RMS of the original signal. Most likely, this is what the 

user intended. 

6.1.5 Choose measurements and scales that minimize conversion 

Any user of Csound, Pd, or Max/MSP will tell you that much of their code is merely converting 

from the units of one function to the units of another. Furthermore, some functions are best 

understood with logarithmic or exponential scales, such as frequency and amplitude. Other 

functions are best understood with linear scales, such as time. The Scratch user should not be 

burdened in any way with these details. All conversions should be assumed internally and hidden 

from the user. 

6.1.6 Support multiple concurrent manipulations of sound 

Scratch scripts do not support branching code into multiple concurrent operations. At the same 

time, letting users manipulate only one sound in one way at a time may severely limit personal 

expression. However, Scratch supports multiple sprites and each sprite can support its own 

independent script. By extending the sprite analogy to include sounds, multiple sounds 

manipulated independently can be implemented in a manner consistent within the Scratch 

framework. This was demonstrated in Figure 20. 

6.1.7 Build upon the already existing visual framework of  Scratch 

 

Figure 41: Blocks that manipulate visual Sprites in standard Scratch 

Figure 41 shows a set of blocks used to move visual Sprites in the standard Scratch environment. 

Blocks that involve audio manipulation should build upon the analogies created in the visual 

primitives. For example, as x and y coordinates manipulate visual elements, perhaps pitch and 

tempo manipulate audio elements. Similarly, as size is an attribute to visual manipulation, volume 

is an analogous attribute for audio manipulation. In this way, the Scratch extensions for audio 
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manipulation will feel natural and intuitive to the user, as they have analogies from the Scratch 

environment the user is used to. This provides a framework in which to expand a user’s 

understanding of sound. 

6.1.8 Require effortless installation 

If we hope for individuals and perhaps even communities to try SoundScratch, then we should not 

burden them with difficult installations that require computer knowledge. Therefore, we cannot 

depend on specialized audio drivers, such as ASIO, and we cannot use virtual MIDI ports. Both 

ASIO drivers and virtual MIDI ports require installation and configuration. Then Csound has to 

be configured to recognize them. 

Instead, we opted to use the standard Microsoft Windows drivers. The choice cost us an 

inherent drop in performance. Standard Microsoft Windows drivers add latency to the real-time 

effects and buffering is not as robust when compared to ASIO, so some clicks can occur as the 

computer multitasks. 

Unlike SoundBlocks, which uses virtual MIDI ports to send and receive messages to and from 

Csound, we instead use pipes. This means that Squeak and Csound communicate information 

between each other by writing inside files. Coordinating this in design is tricky as each has to 

open the file it writes to before the other reads from it. Also, it required that Csound source 

code be recompiled to include flushing commands so Squeak could see the information Csound 

was writing. A Windows script handles all of the details, including killing the Csound task when 

Scratch quits. The end result is a robust system that requires no configuration and is easy to 

execute.  

6.2 Implementation 

The underlying code for Scratch has been written in Squeak, an open source version of Smalltalk. 

This Squeak code was extended to make calls to Csound, the sound-processing engine. Like 

SoundBlocks, SoundScratch uses instance numbers as a way for both Csound and the calling code to 

keep track of the independent sound manipulations. 

When a new sound is created or loaded, SoundScratch writes the sound to a temporary dictionary, 

and then loads it into a Csound ftable. It then updates a dictionary that maps this sound to the 
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corresponding Csound ftable number. As sounds are started, stopped, and modified, 

SoundScratch sends the command with the instance number and ftable information if necessary to 

Csound. 

Within Csound, one rather large instrument, the main instrument, has all possible effects 

described. Scratch sends Csound commands to initialize instances of this instrument. Within this 

instrument, Csound code skips the effects that are not being used and processes the effects that 

are being used. Information is passed to the specific instrument that has been assigned to each 

command. Command instruments are used to send commands or change parameters in already 

existing main instruments. Like with SoundBlocks, this information is sent to the main instrument 

by specifying indexes in arrays, defined uniquely by the instance number of the main instrument. 
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7. Evaluation 

7.1 SoundBlocks 

7.1.1 Overall Evaluation Strategy 

 

We evaluated SoundBlocks for usability, understandability, and expressiveness for youth ages 10-

15. In evaluating understandability, we tried to determine how well the youth understood the 

functions of the blocks, the behavior of the network, and the sounds they were creating. 

We arranged for youth to play with SoundBlocks in groups of 2-5 on 8 separate occasions. 

Sessions were between ½ hour and 2 ½ hours. All evaluations took place with at least one music 

educator present. Evaluation session locations were widely varied. Some took place in the kids’ 

homes, some at a day camp, and some in my own home. The sessions took place at different 

times of day and between a variety of scheduled and unscheduled activities. The kids, their 

backgrounds, and my relationship to them were also widely varied. Some kids were children of 

 

Figure 42: Singing with SoundBlocks 
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friends of mine, and some I didn’t know and didn’t know me. Some had strong musical 

backgrounds and some professed to hate musical instruments. Sometimes sessions included 

youth who had seen SoundBlocks previously. 

For the evaluation session, we organized a 4-part tutorial, designed to be 20 minutes in length. 

In the tutorial, the children took turns playing with the network as I guided them. As the youth 

continued to explore the blocks, music educators and I observed. At times we posed challenges 

to the children related to their interaction with the blocks. Typically, the challenges were to 

create this or that network or this or that type of manipulation or sound. The children’s 

responses to these challenges helped us comprehend their understanding of the blocks and of 

the sounds they were creating. 

During the sessions, we also asked youth questions about themselves. The questions included 

what their own interests were, what their favorite subjects were in school, what they did with 

their friends, what they liked and disliked about the blocks, and what their favorite block was 

and why. Depending on their answers, we sometimes asked follow-up questions. The purpose of 

these questions was to understand more about the youth, have them feel comfortable with both 

the blocks and with us, and gain a better understanding of the youth’s perspective of the blocks. 

A few of the sessions were videotaped. Some of the resulting sounds from the sessions have 

been preserved as audio. Both this video and audio have been reviewed to determine the 

expressiveness of the system as well as to better define what is possible for children to create 

within the system in a short time frame. In total, we have approximately 2 ½ hours of raw video 

footage and 2 ½ hours of audio. 
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7.1.2 Tutorial introducing the blocks to Youth 

 

Figure 43: Visual Aids for SoundBlocks tutorial 

I worked with a music educator to develop a short tutorial of four lessons that together could 

introduce the blocks to small groups of children. The four lessons were designed to take 20 

minutes. They broke down as follows: 

7.1.2.1 Micky Microphone and Dorothy Delay 

• Purpose: A gentle introduction to SoundBlocks. Explain that the blocks are used to manipulate 

the sounds around us. Create a simple network to manipulate sound in real-time and have the youth 

interact with it. 

• Introduce Chris the Speaker. We hear whatever we hook up to Chris. 
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• Introduce Micky Microphone. Have a kid connect Micky to Chris. Explain the concept 

of “in” and “out” as it relates to the network. 

• Have a kid connect Dorothy Delay’s Den between Chris the Speaker and Micky 

Microphone. This demonstrates how to create a network. It also introduces the 

distinctions in input between “how” and “what.” 

• Introduce Pitch ‘R Number. Show how the delay changes as a function of Delay’s 

“what” input using Pitch ‘R Number. 

 

7.1.2.2 Pitch ‘R Number and Wild ‘N Random Pitch ‘R Number 

• Purpose: Demonstrate that we can play with the network to discover the functions of various blocks. 

Show two basic primitives: Pitch ‘R Number and Wild ‘N Random Pitch ‘R Number. 

• Show how Pitch ‘R Number generates audio when connected to Chris. 

• Make up games so kids use Pitch ‘R Number  to emulate Wild ‘N Random Pitch ‘R 

Number. 

• Introduce Wild ‘N Random Pitch ‘R Number: have a kid connect this block directly to 

Chris. 

• Have a kid plug Pitch ‘R Number into Wild ‘N Random Pitch ‘R Number. 

• Optional: have the youth plug two Wild ‘N Random Pitch ‘R Numbers together. 

 

7.1.2.3 Polly’s PitchShift Parlor and the Robotic Combiner Diner 

• Purpose: Introduce some of the blocks that manipulate sound. Have the youth feel comfortable 

playing with the sound manipulators named after rooms: Dorothy Delay’s Diner, Polly’s 

PitchShift Parlor, and The Robotic Combiner Diner 

• Have a kid connect Polly’s PitchShift Parlor to Chris the Speaker. Ask the kids why they 

do not hear anything. 

• Have a kid connect Micky Microphone  to Polly’s “what” input. Now we hear the 

output of the microphone, but the pitch is not shifted. Ask the youth why this might 

be and what they might try. 
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• Have a kid connect Pitch ‘R Number to Polly’s PitchShift Parlor’s “how” input. Have the 

youth play with this configuration. 

• Have a kid replace Pitch ‘R Number with Wild ‘N Random Pitch ‘R Number and/or 

replace Polly’s PitchShift Parlor with The Robotic Combiner Diner  

7.1.2.4 The Sample Maker 

• Purpose: Introduce The Sample Maker. Through the tutorial, have the youth practice learning 

about the blocks through exploration. 

• Explain the purpose of The Sample Maker. 

• Have a kid connect The Sample Maker directly to Chris. 

• Have a kid press the record button of The Sample Maker. The block will respond by 

telling them they need to connect a block to its record input. 

• We discuss what we want to record. Probably it will be Micky Microphone. A kid 

connects Micky to The Sample Maker’s “record” input. 

• We record some samples. We practice reviewing and deleting samples, and choosing 

from the random sample list. 

• We hook up a simple network that triggers the recorded samples randomly. We 

connect a Pitch ‘R Number block to The Sample Maker’s “speed” input to change 

the speed at which these samples are played. 

 

After completion of the tutorial, the children were encouraged to play freely with the blocks as 

guided by their own understanding and their own imaginations. The music educators and I were 

available as a resource and to observe their interaction and creations. This time of free play had 

no specified time window. It was as long as the youth wished to play or until another event 

dictated that they leave. In general, the music educators and I tried to keep our interference 

during free play at a minimum. There were even periods where we intentionally left the youth 

alone to explore the blocks without supervision. 
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7.1.3 Tutorial Presentation 

In the evaluation sessions, I introduced the blocks using three different approaches. In the first 

approach, I stepped them through the short tutorial outlined above, making sure the tutorial was 

complete within 20 minutes. Sticking to this timeframe was not always easy. Typically, youth 

would become excited about the blocks right at the beginning of the tutorial and would actually 

want to grab the network away from me so they could start playing with it themselves. While I 

allowed them to experiment to a limited degree, I also did not hesitate to stop their play so I 

could remain on schedule. The result was an interactive tutorial that was at the same time 

completely in my control. During the tutorial, the youth were not allowed to freely play with the 

blocks. 

In the second approach, I followed a much looser structure. I used the tutorial only as a way to 

initially introduce the blocks. As the youth became actively involved, I would allow them to 

completely take the blocks over before the tutorial was complete. This way their own 

explorations would largely guide their initial introduction to the blocks. If they got stuck or 

asked me questions, I would perhaps borrow from the tutorial to help them discover more 

about the blocks. This approach meant that we did not always complete the tutorial, and if we 

did, then it would not be within the 20-minute time frame. It blurred the distinction between 

tutorial and free play.  

Sometimes an evaluation session included a child who had seen the blocks before. When this 

occurred, I tried a third approach. The third approach included no tutorial and as little direction 

as possible from me. Instead of providing continual direction, I asked the child who had seen 

the blocks before if he wanted to work with me to introduce the blocks. I would let this child 

lead an introduction in any way he wished, to the degree to which he was comfortable doing so. 

If I sensed that the child was struggling with the explanations or there was some confusion 

within the group, I would offer guidance. 
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7.1.4 Observations 

This section is a compilation of the observations made by music educators and by me from the 

evaluation sessions. 

7.1.4.1 “Into Computers” vs. “Artistic” 

During the evaluation sessions, children tended to describe themselves as either “into 

computers” or “artistic,” and few children described themselves as both. The youth into 

computers did not show a better understanding of the network behavior. Moreover, the self-

described artistic children created some of the most interesting sounds and structures when 

using SoundBlocks. 

The most interesting sounds came from a group of three girls ages 12-14, all friends, and all 

musically inclined. One of them had played with the blocks previously, and she led the initial 

introduction. Already, with just Dorothy Delay and Micky Microphone, the group created activities I 

had not thought of. They sang a call and response song where they sang the call and the blocks 

“sang” their response. Later, the girls sang in harmony and recorded this in the sampler maker. 

They then used the robot combiner to cross-synthesize this recorded harmony with the 

microphone input and delay. They spoke into the microphone and also tried to sing along with 

it. These kids appeared to me the most inspired of any that worked with the blocks. They played 

 

Figure 44: Experimentation with SoundBlocks 
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with it for 2 ½ hours, at which point I had to ask them to leave because I had other 

appointments.  

However, non-musical kids also enjoyed exploring the blocks and created interesting sounds. 

Cody, a 12-year-old boy, stated at the start of his tutorial that he hated musical instruments. In 

spite of this proclamation, he became very involved in the process of creating sounds with the 

blocks. 

7.1.4.2 Understanding 

In general, children ages 14 and older could completely comprehend the signal flow within the 

network. Children ages 8-10 could understand the function of the blocks, but often had 

difficulty understanding the signal flow well enough to know where to place each block within 

the network. Because of this, they struggle with what relationship the blocks needed to have to 

each other so they could hear the results they desired. One child, for example, wanted a delay in 

the sound so she hooked up Dorothy Delay’s Den by attaching to wherever it most conveniently fit 

in the network. She did not think to trace the signal flow; this was a common error. 

Besides ages, however, there seemed no clear predictor as to which youth would understand the 

network, to what degree, and how long it would take them to understand it. Whether the child 

expressed interest in computers, mathematics, arts or sports provided no clear correlation with 

understanding. 

Because a group of children can concurrently interact with the blocks in different ways and on 

different levels, groups of children successfully played with the blocks even when not every child 

demonstrated complete understanding of the network behavior. Caitlin and Nolan, a brother 

and sister, illustrated this in their interaction with the blocks. Caitlin is a 13-year-old “artistic” girl 

who quickly developed a perfect understanding of how the blocks interacted with each other. 

Nolan, her 9-year-old brother, loved the blocks too, but had less understanding of the network 

structure. When playing with the blocks, Caitlin would often build the network while Nolan 

would explore the sounds that Caitlin created. This division of interactivity within the group was 

common. 
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8-10 year olds typically loved the sounds and loved playing with the blocks, but their ability to 

understand what was happening seemed very limited. If the group were comprised only of this 

age group, they enjoyed the blocks the most when I showed them simple configurations and 

gave them only a few blocks to play with. Then they might experiment with limited variations of 

these configurations. In this context they enjoyed the blocks immensely. 

7.1.4.3 Experimentation 

 

Figure 45: Making sound with SoundBlocks 

When creating the initial prototypes of the blocks, I had many graduate students and faculty at 

the lab play with them. These adults seemed hesitant to explore the network before they could 

completely grasp exactly how SoundBlocks functioned. Unless they could predict behavior of the 

network at all times, they seemed almost embarrassed to explore the network. I wondered at 

times if some of them feared they would look silly if they started to make connections that might 

be perceived as nonsensical or foolish. 

In contrast to this, the youth of all ages seemed to enjoy playing with the network even when 

they had little or no understanding of the behavior of the blocks. Instead of being concerned 

with nonsensical connections, they often enjoyed the surprises in the resulting sounds they 
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created and heard. It seemed as though the kids started their explorations without expectations 

of what a particular combination of blocks would sound like, and in general they found all of the 

sounds funny and appealing in some way. They often made mistakes, such as trying to connect 

outputs to outputs, inputs to inputs, or connecting cables to each other, and they seemed to 

have less embarrassment then adults when they made these mistakes. 

Kids also seemed to enjoy using the microphone spontaneously. Often they would not know 

what to say into the microphone, so they would make goofy sounds or just talk. In contrast, 

adults who had tried the environment during the development stage and the parents and 

teachers who explored the environment throughout development and testing seemed hesitant to 

make any noises in the microphone at all. Also, some kids seemed to be less inhibited when 

adults and especially parents were not perceived as actively watching.  

7.1.4.4 Social makeup of the youth 

The children’s impressions of SoundBlocks and their willingness to play with it were related to the 

social makeup of the group. Specifically, youth who were friends were much more likely as a 

group to become excited and experimental with the blocks. These friendships within the group 

suggest that these children already share meaningful activities together, and this helps to create a 

common experience from which they would experiment with the new environment. For 

example, one group of kids were Harry Potter fans. They enjoyed quoting various sections of the 

books. For these kids, manipulating their voices with the blocks to sound like the various 

characters of the books proved endlessly entertaining. Another group of kids really liked blues 

music. One of them used The Sample Maker to record himself playing a simple blues melody on a 

keyboard. Then two of them manipulated their voices using the recorded sample and The Robot 

Combiner Diner. 

If the social network within the group was not balanced, a child might feel alienated from the 

activities and therefore not wish to play with the blocks. Skyler, a 9 year old boy grouped with 

three 12-14 year-old girls, enjoyed the blocks only for a short time. After perhaps 20 minutes, he 

asked to be excused. There could be a variety of reasons for this. Perhaps, however, it was 

simply that he was younger than the other kids, had different interests, and belongs in a different 

social network for the evaluation. 
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7.1.4.5 Aesthetics and Shape 

Youth showed a lot of interest in the shapes of the blocks. In general, they seemed to like the 

simpler round primary shapes better than the more complex transparent block shapes. They 

enjoyed building structures with the blocks and in general were interested in making structures 

which appealed to them aesthetically as well as aurally. 

For example, one child on seeing SoundBlocks immediately wanted to hook up as many blocks as 

possible. He was initially more interested in making sophisticated network relationships than 

hearing the resulting sounds. He expected that the sounds would be interesting only if the 

network structure were sophisticated. 

Children ages 9-11 especially seemed initially concerned with building structures that they 

thought were interesting to look at. They enjoyed considering aesthetics, deciding which block 

would “look right” when placed next to another particular block, or choosing the connector 

with the correct length. As they tried to make interesting shapes or objects, they would listen to 

what they created. 

In general, the labels on the blocks are not as effective in communicating the behavior of the 

blocks as physical cues. For example, kids often stubbornly try to force the connectors to go the 

wrong way. They aren’t reading what the blocks’ labels for inputs and outputs. If the blocks and 

connectors offered more visual cues as to how they fit together, the children would likely find 

the environment more intuitive. 

7.1.4.6 The Sample Maker 

The Sample Maker was very popular. Students thought the jokes on it (this is not a bomb…or a 

tomato) were funny. They liked all of the buttons on it and liked being surprised by the random 

sounds in it. 

However, the children also found The Sample Maker’s user interface confusing. For example, they 

expected its buttons, especially the “play” button, to work all of the time. It was not intuitive for 

them that the sampler maker had both a “record/review” mode and a “normal” mode for 

triggering the samples in the network. Moreover, children would often get confused where on 
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the list a particular sample was stored so they found it clumsy and frustrating to find the samples 

they had recorded.  

7.1.4.7 Audio Distinctions 

Children without musical training often had difficulties hearing what sometimes appeared to be 

obvious differences in the sound. For example, many kids could not distinguish what was 

changing as they turned the knob on a Pitch ‘R Number block connected to a Wild ‘N Random 

Pitch ‘R Number block, as shown in Figure 46. 

 

Figure 46: Random pitches change with steady speed 

To musically-trained adults, the sound difference seemed obvious: a steady stream of random 

pitches varied in speed. A similar fairly simple configuration also confused children. Two Wild 

‘N Random Pitch ‘R Number blocks connected to each other will generate a stream of random 

pitches at random speeds, as shown in Figure 47. The children had trouble distinguishing the 

difference between this configuration and the Pitch ‘R Number block connected to a Wild ‘N 

Random Pitch ‘R Number configuration of Figure 46. 
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Figure 47: Random pitches change with random speed 

Many children also did not seem to comprehend the distinction between playback speed (where 

both the pitch and speed are effected) and pitch shifting (where the pitch is effected but the 

speed remains constant.) 

As the children played with the blocks, their abilities to distinguish between these different 

aspects in the sound seemed to improve. They seemed to enjoy discovering these distinctions, 

and sometimes would then be inspired to create networks that brought out changes in the 

distinctions they had discovered. 

7.1.4.8 Youth find even simple manipulations of the sounds around them fascinating 

Just about all of the kids who tried SoundBlocks were instantly fascinated by hearing their own 

voices and controlling how their voices were distorted. In general, young kids were quick to grab 

and shove the blocks between each other. Overall, they were much more fascinated with the 

sounds themselves and their ability to manipulate them with knobs than with how the network 

was constructed to create the sounds. 

Whenever kids used SoundBlocks, there would be a lot of laughing. They seem to find the sounds 

from the blocks to be very surprising and funny. They also seemed to enjoy trying to surprise 

each other and themselves with the resulting sounds. 

7.1.4.9 Visual cues help understanding 

Some children seemed to understand the behavior of the blocks mostly through these blocks’ 

LEDs. These children could quickly grasp the mapping of each block’s state to the color of a 

LED, and then would predict the behavior of the system by describing the LED color. One 9-

year-old boy, for example, would describe the network with statements like  “the block is blue so 

we should hear...” Sometimes, because of his angle to the blocks, he couldn’t even see the LED 

colors. After he made these statements, he would sometimes turn the blocks around to check if 

his predicted LED colors were correct. Apparently, he would imagine what the LED colors 

might be, then would describe this visual state and predict the resulting sound. 
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7.1.4.10 Adaptive Properties 

Because the blocks have some adaptive properties, the network often produces interesting 

sounds even when configured in unconventional ways. This was intentional, but it does have a 

controversial byproduct. Sometimes a group of children would have an idea of how they wanted 

to manipulate sound, but they would construct the network incorrectly to create this. Although 

they would get a different result than the one they intended, the adaptive properties of the 

blocks meant that they might have still created something that they found amusing. They often 

became districted by the new manipulation and would forget about the original problem they 

were trying to solve. 

There are two ways to interpret the above scenario. In one sense, the adaptive properties of the 

blocks actually obstructed understanding, since the unexpected results were appealing enough to 

distract from the original problem. On the other hand, many kids initially showed little patience 

for the system, and if they had gotten poor results instead of unexpected and yet interesting 

results, they may have put the blocks away and lost interest. 

7.1.4.11 Boredom 

When children played with the blocks in several sessions or over an extended session, they 

seemed to learn about the environment in phases. These phases were divided by what could be 

described as plateaus, which I initially perceived as boredom. For example, on one occasion two 

13-year-old boys at one point seemed to run out of ideas of what to do with the blocks. They 

appeared to be losing interest. I was tempted to interfere and try to show them “something 

cool” which I hoped would keep their interest. Instead, I let the scenario play itself out, 

imagining myself packing up the blocks within the next few minutes when they drifted to some 

other activity. Instead, this perceived boredom made them wonder about some of the other 

blocks that they had not yet used or learned about. They picked up the “ask me” block and 

began initially plugging blocks that they already understood into this block. They heard 

explanations of the blocks, and it seemed as though they enjoyed hearing about something that 

they already understood. Then they moved to blocks that they did not yet know about. They 

then tried playing with these blocks. If they had not gone through this period of apparent 

boredom, they may not have branched out to try these as yet untried blocks. 
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7.1.4.12 Kids leading the teaching 

If a child within the group was already familiar with SoundBlocks, I typically had this child lead the 

introductory tutorial. This approach had mixed results. Sometimes I overestimated the 

understanding that the child familiar with SoundBlocks had. In this situation, the child would do 

his best to show network configurations he could remember, but was unable to explain why the 

networks did what they did or how to troubleshoot when something went wrong. In one case, I 

had to interfere to help the group understand the blocks. In another case, the child and her 

friends together puzzled out how they worked. They quickly grasped what blocks would be 

necessary for the constructions they wanted to create, but it was more challenging for them to 

figure out the network flow necessary to make these blocks behave as they wished. 

7.1.4.13 Expressivity and Real-time Control 

Some children were initially very shy of the blocks, but when they heard the various sounds, they 

opened up. These kids typically found expressiveness by manipulating the knobs for kids who 

were less shy and made noises into the microphone. 

I had expected kids to love the Wild ‘N Random Pitch ‘R Number block. Instead, they took to the 

standard Pitch ‘R Number block with the knob. This may be because Pitch ‘R Number gave them 

immediately real-time control over what they were doing. They preferred this to the random 

automation of Wild ‘N Random, which actually gave them no control over their own product. 

7.1.4.14 Other observations 

Adults and youth over 15 appeared to enjoy SoundBlocks as much as the 10-15 year-olds for 

which the environment was intended. For example, when showing the blocks to children at a 

youth camp, the young adult counselors seemed as interested in the blocks as the children. One 

time, a counselor actually took the blocks away from the kids and started playing with them 

herself. I was not sure if this was a good thing, but the kids seemed okay with it. I think they 

enjoyed the counselor taking an active interest in their activities. 

 In general, children seemed to enjoy opportunities to explore SoundBlocks in more than one 

session. When exploring it a second time, they often recreated structures that they had explored 
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previously. When they were showing the environment to other kids, they often used these 

recreated structures as a point of departure for explanations. 

One music educator felt the environment would be richer if sounds could be layered. This could 

be implemented if a certain timeframe of sound could be repeated over and over as a loop. Then 

the user could layer sounds in this timeframe on each pass. As The Sample Maker is redesigned, 

there may be a possibility to integrate this idea. A few children wished to process sound 

manipulations multiple times by creating a loop within the network. Also, one group wished to 

record sound into The Sample Maker, play this sound back, manipulate it, then rerecord it again 

into The Sampler Maker. This might be possible if loops were allowed or if the system included 

more than one Sample Maker. 

I asked all of the kids what their favorite block was. Responses were numerous. However, a 

common answer was the Robot Combiner Diner. I speculate that there are several reasons for this. 

For starters, the name is appealing. For many of the younger kids especially, when initially 

hearing the name of this block they would be immediately excited and would repeat the name 

over and over, apparently just because they liked saying and hearing its name. More than this, 

however, many of the kids observed that the Robot Combiner Diner added character to their 

voices. This is in contrast to, say, Polly’s PitchShift Parlor, which alters the pitch of the voice but 

not the overall character. 

 

Figure 48: An expressive network 
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Some others liked the Smooth Slider. When asked about this they replied that they enjoyed hearing 

connections between tones. These connections also can enhance expressivity for some 

networks, such as the one shown in Figure 48. This configuration changes the inflection of 

somebody’s voice as they speak. Because these changes are unpredictable, sometimes the 

person’s talking takes on surprising meaning or expression, which kids (and adults) found both 

interesting and entertaining. 

Educators observing the kids felt that the kids learned a great deal about the network structure 

and the signal flow of the network through play with the blocks. One interpretation of what was 

happening is that the kids were, in a sense, creating a tangible program, which they then 

debugged with their ears. In fact, their complete understanding of the blocks, these blocks’ 

functions, and the blocks’ relationships were all governed by the sounds they heard. 
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7.2 SoundScratch 

7.2.1 Overall Evaluation Strategy 

 

Figure 49: SoundScratch at the Sound End Technology Center 



 

- 113 - 

 

SoundScratch was evaluated in a manner similar to SoundBlocks. Youth ages 10-15 explored the 

environment, and music educators and I appraised the usability and expressiveness that the kids 

seemed to experience in the environment. We also evaluated the youth’s experience 

understanding the sound manipulations themselves. These youth were from a variety of 

backgrounds. Some were already familiar with Scratch or MicroWorlds Logo and some had no 

programming experience whatsoever. Some had advanced musical training and some did not. 

Inner city youth from underserved communities participated as well as youth from more 

privileged communities. Evaluations took place at The Sound End Technology Center of 

Boston, The Computer Clubhouse at the Museum of Science in Boston, and at the New 

Hampshire Music Festival at Plymouth State College in Plymouth, New Hampshire. Youth at 

Plymouth were the children of festival participants. 

As with SoundBlocks, I designed a tutorial for SoundScratch to be about 20 minutes in length. The 

tutorial was divided into six parts, and provided a short introduction to Scratch as well as the 

various possible sound manipulations in SoundScratch. During the tutorial, youth manipulated the 

blocks and used the microphone, as directed by me.  By the end of the tutorial, they were free to 

explore the environment as they wished. Music educators and I observed their exploration and 

served as a resource for questions if the youth needed any help. We also asked questions and 

initiated challenging problems if we felt this to be helpful motivationally for the children or for 

our own evaluation. Our intention was to best understand the youth’s perception and 

understanding of the environment in the short time we had with them. 

As well as we could, we also tried to learn a bit about the youth themselves. We asked them 

questions about what their favorite classes were, whether they liked sports, art, mathematics or 

English, and what their favorite activities were. Through these questions, we got to better 

understand how youth with different styles of learning experience the environment. 

As the youth worked within the environment, we recorded pictures and video. We also archived 

some of their creations, although unfortunately some of these have been accidentally lost. We 

have reviewed the media we still have for a better understanding of the usability and 

expressiveness the youth experienced with the environment, as well as their understanding of the 

various sound manipulations. 



 

- 114 - 

7.2.2 Tutorial Introducing SoundScratch to Youth 

 

Based on what had and had not worked in presenting the tutorial of SoundBlocks to youth, I 

developed a tutorial for SoundScratch. The tutorial consisted of six parts. 

7.2.2.1 The Scratch Environment 

• Purpose: Introduce the basic concepts of Scratch using its visual elements. 

• Explain that there is a costume we can manipulate: a cat. 

• Have youth click on the blocks to move and rotate the cat. 

• Demonstrate the script window by having youth drag the “move” and “rotate” 

blocks into this window. 

• Show how the blocks interlock: have a child interlock the “move” and “rotate” 

blocks together, then double-click on these blocks. 

 

Figure 50: Members of the Museum of Science Computer Clubhouse using SoundScratch 
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• Demonstrate the “forever” block: have a child insert the “rotate” and “move” blocks 

into the “forever” block and double-click on it. 

• Demonstrate the stop button. 

• Connect a “when green flag is clicked” block to the “forever” blocks. Show how this 

configuration rotates the cat in a circle when the green flag is clicked. Stop it with the 

stop button. 

• Show that we can replace the cat with our own picture. 

7.2.2.2 Introducing Sound Manipulations 

• Purpose: Demonstrate simple sound manipulations in SoundScratch. 

• Show the “sound” category to Scratch and the corresponding blocks. 

• Have a kid demonstrate the “set sound to” and “start sound” blocks. 

• Have a kid change the pull-down menu in the “set sound to” block from “pop” to 

“meow”. 

• Show pitch shifting: have a kid create a script that sets the sound to “meow”, sets the 

pitch, then starts the sound. The kid chooses the pitch by typing a number into the 

“set pitch to” block. 

• Have a child replace the “set pitch to” block with a “set tempo to” block. As they 

type numbers, the meow plays at different speeds, as well as backwards and 

forwards. 

7.2.2.3 Recording 

• Purpose: Introduce basic possibilities for youth to create their own personal sounds. Introduce sound 

effects. 

• Show the “Sounds” category (where “pop” and “meow” are listed.) Explain that any 

.aiff file can be manipulated, just as we already have with “pop” and “meow.” 

• Have a kid record a sound and name it. 

• Manipulate the new sound as in 7.2.2.2. 

• Demonstrate the sound effects by replacing the “set pitch to” block or “set tempo 

to” block with a “set sound effect to” block. Experiment with various sound effects 

within this block. Ask the children to describe what each one sounds like. 
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7.2.2.4 Loops and mouse manipulations 

• Purpose: show how sound manipulations can be changing continually, and can be mapped to mouse 

movements. 

• Ask the youth if they can remember the “forever” block introduced in section 

7.2.2.1. Explain how this block can function with sound as well as with visual 

costumes. 

• Introduce the “resume sound” block: have a child place this block inside a forever 

block and double-click. They will hear the selected sound repeat from beginning to 

end continuously. 

• Ask the youth what might happen if we insert a “set pitch to” block inside the 

“forever” block as well. Have them try it. Once the block is inserted, they can again 

type in numbers directly into this block and hear the resulting change immediately. 

• Show youth the “mouse x” block in the “sensing” category. Show how this value is 

continually changing as we move the mouse. 

• Ask the youth what would happen if we replace the number in the “set pitch to” 

block with the “mouse x” block. Have a child try it. 

• Ask the youth what other effects they wish to manipulate with mouse movements 

and have them create the necessary configurations to try these things.  

7.2.2.5 Using live microphone 

• Purpose: demonstrate that live sound from the microphone can be manipulated as easily as recorded 

sound. 

• Show how the “set sound to” block has an option for “live microphone.” Have a 

child choose this option, then “start sound” to hear her own voice. 

• Introduce the “delay” block: have a child double-click this block with a setting of 

500 (.5 seconds). 

• Introduce the “reset sound effects” block: have a child double-click on this block to 

remove the delay. 

• Have youth alter the manipulations described by the set of blocks constructed in 

section 7.2.2.4 by changing the “set sound to” block to “live microphone.” 
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7.2.2.6 Sprite Independence 

• Purpose: Show how multiple sounds can be manipulated independently and simultaneously. 

• Show how there is a list of sprites in the bottom right hand corner, and that currently 

we have two sprites: the active sprite and a background sprite. 

• Explain the concept of sprites. 

• Have a child create a simple sound manipulation so that “live microphone” is pitch-

shifted continuously with “mouse x” when the green flag is clicked. 

• Have a child clone this sprite twice, so now there are three copies of this. 

• A child now clicks on the green flag and hears the microphone output, perhaps a bit 

louder and with some mild chorusing artifact. Ask the youth what is happening. Help 

them deduce that all three scripts are running independently and simultaneously. 

• Show how we can edit the script of each sprite independently: have a child alter one 

sprite by getting rid of one of the pitch shifting blocks, then alter another sprite by 

having the pitch manipulated by mouse y. We now have the set of scripts described 

in Figure 20. 

• After the children play with this, show how set values for the pitch shift can create 

various chords. 

 

The described tutorial was sometimes abbreviated, depending on the age of the youth and their 

demonstrated understanding of the environment during the tutorial. At the end of the tutorial, 

the children were free to play with the environment, guided by their own imaginations. While the 

music educators and I continued to observe, we kept our interference at a minimum. The free 

play time period typically had no specified time window. It was as long as the youth wished and 

were available to continue to create within the environment. 
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7.2.3 Tutorial Presentation 

SoundScratch, like SoundBlocks, is intended to be an environment which children are free to 

explore as they wish. However, unlike SoundBlocks, SoundScratch does not require a special setup 

and can be quickly running in most typical computer rooms. Therefore, the tutorial for 

SoundScratch was typically more informal than that for SoundBlocks. 

SoundScratch tutorials were always conducted at a center with multiple computers and where kids 

were currently using the computers, typically for games. Usually, I would sit down at a computer, 

get SoundScratch running, then ask the youth in the center if they wanted to “check it out.” If I 

got no response, I just started playing with it myself. Invariably at this point, some youth would 

begin to notice the manipulated sounds I was creating and would become interested. In this way, 

they chose to explore SoundScratch only if they wished and on their own terms. 

There was one notable exception to this approach: at The South End Technology Center in Boston, I 

conducted the tutorial as a formal presentation. The scenario was as follows: The Future of 

 

Figure 51: Youth in New Hampshire with SoundScratch 
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Learning group runs a day camp at The South End Technology Center, which ends at 3PM. Usually at 

2:30 they have a roundtable discussion, before the youth can leave for the day. On July 19, 2005, 

I used their 2:30-3:00 time to introduce SoundScratch to them instead. We invited any youth who 

were available after 3PM and wished to explore the environment further to work with me 

individually after the camp ended that day. 

7.3 Observations 

7.3.1 Live Microphone is especially attractive 

In general, youth enjoy hearing the results of sound manipulation scripts in SoundScratch. They 

especially enjoy taking turns making sounds into the microphone and hearing the resulting real-

time manipulation of their voice. They find hearing themselves and hearing their friends’ voices 

manipulated in this way very funny. 

Younger children especially find simple manipulations with the microphone endlessly fascinating 

and a complete world to explore in itself. Tyler, for example, was a 10-year-old who loved to 

hear his voice pitch-shifted. He spent a surprising amount of time just talking into the 

microphone and hearing his voice pitch-shifted to be one octave higher. He pretended during 

this time that he was a mouse. Eventually, I showed him that with a “forever-set pitch to mouse 

x” script he could change the pitch as he moved the mouse. Using this configuration was 

interesting enough for him that he had no desire to explore further possibilities of the 

environment for quite some time. He started making up a story, where he played both characters 

in the story. For the “big fat” character he pitch-shifted his voice to be low. For the little mouse 

he pitch-shifted his voice to be high. As he told his story, he changed the pitch shifting 

parameters just by moving the mouse.  

7.3.2 Programming 

While it is easy to engage youth with SoundScratch when I describe to them how to manipulate 

the blocks to create interesting scripts, it seems much harder to motivate them to create their 

own scripts without my lead. The hurdle may be the programming element, which has some 

learning curve and which they appear to be reluctant to venture into in general. 
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This hurdle became evident in different ways with different groups of kids. At The Sound End 

Technology Center, kids would wait for me to come up with a new idea for a manipulation then 

have me describe how to situate the blocks for this manipulation. If I provided all of this 

guidance, then they enjoyed playing with the resulting sound. However, if I asked them for ideas 

for sound manipulation or how we might create the script for a given idea, they seemed to lose 

interest quickly. 

During a free-play time period in New Hampshire, one kid was full of creative ideas for how the 

sounds might be manipulated, but he would not consider how he might create these 

manipulations himself. Instead, he would immediately ask me to do it for him. I would challenge 

him to figure it out with me and he was extremely reluctant to do this. Moreover, he did not 

seem to enjoy this process. The problem-solving element of it apparently did not appeal to him. 

He seemed much more focused on the results. 

When youth were reluctant to create scripts, I often found it helpful to focus on how they might 

manipulate sound just by clicking on various blocks and changing the parameters within these 

blocks. For example, a kid might drag out two “set pitch to” blocks, and insert the number “50” 

into one of them and “200” into another. He might then set the sound to the microphone and 

click on the “start sound” block. He could now click on either of the “set pitch to” blocks to 

immediately change the pitch of his voice to an octave higher or an octave lower. While not a 

full-fledged script per se, it at least offered an introduction to the idea of programming with 

scripts, and that they could control the manipulations of sound themselves. 

7.3.3 Visual Element 

When designing SoundScratch, I had underestimated how much the visual elements of Scratch 

would contribute to the sound manipulations that youth would find interesting. Many youth, in 

fact, would start their exploration of SoundScratch by first creating an animation, then adding 

sound to that animation. In these cases, it seemed as though the visual element was actually 

providing the motivation the youth needed to inspire them to explore the sound manipulations.  

From the youth’s perspective, it appears that making the sounds alone did not provide the 

richness for a complete story or creation. On the other hand, the visual elements seemed to 

come alive and excite them as they added sound to them. Within this context especially, they 



 

- 121 - 

found it fascinating to manipulate their own voices to sound like things they don’t recognize. 

Here are some examples: 

• Frank was a member of the Sound End Technology Center. He began his 1½ hour 

exploration of SoundScratch by writing a script to make the cat move around the 

screen. He developed this script so that the cat would rotate, and would follow the 

mouse. At this point, he integrated sound by having a sound start when he pressed 

the mouse button, then stop when he released the mouse button. He reversed these 

functions so the sound started when he released the mouse button instead. Then he 

began to explore the possibilities of mapping pitch and speed with cat position. This 

presented some interesting challenges of how to get the pitch to drop when the cat 

went down and the pitch to go up when the cat went up. 

• One member of The Computer Clubhouse had worked with Scratch previously. She had 

recently written a story using Scratch and wanted to use the sound extensions to get 

the characters in her story to start talking to each other by manipulating her own 

voice to represent the different characters.   

• Natasha in New Hampshire was initially interested only in the visual elements of the 

program. We worked together for 1½ hours with me helping her figure out how to 

make a basketball player dribble a ball and shoot the ball into the hoop. I was really 

amazed at how quickly she could grasp the language and how she could figure out 

how to do stuff pretty much all on her own.  

• A group of three boys and a girl in New Hampshire were initially interested only in 

the animation. The girl drew three costumes: Saturn, Earth, and a black background. 

The boys drew a spaceship costume. Through play, the four of them eventually 

evolved a plot: the space ship would twirl in space, run into Saturn which would then 

twirl into space, then run into earth which would twirl off of the screen. After they 

created the scripts for this animation, they wanted to add sounds. When the space 

ship hits Saturn, they recorded “oh no!” which they pitch shifted down, added echo, 

then ran a high-pass filter to clear up the muddiness in the sound. After Saturn says 

“oh no!” then the space ship says “yes” with a pitch shift upwards of about two 

octaves and also a high-pass filter. They thought this was really funny. Then Saturn 

twirls around until it hits Earth. When it hits Earth, Earth says “we’re all gonna die!” 
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which was played without manipulation, and several of them saying it at once. The 

final product was an impressive achievement representing 2 ½ hours of play. 

• Tyler, who had been making up stories about a mouse and a big fat man using the 

sound manipulations, wanted to draw a mouse to support his story. In this example, 

the sound manipulations supported exploration of the visual elements of Scratch 

rather than the other way around, as was more typically the case. 

7.3.4 High Level Structures and Synthesis 

Many users and members of the Sound End Technology Center especially were very interested in 

using SoundScratch to create loops and manipulate synthesized sounds. This is consistent with 

kids interests: many of them listen to rap and hip-hop and they wish to explore this style of 

music and the synthesized sounds they hear in this music. 

High-level structures using synthesized sounds are possible through scripts within SoundScratch. 

However, they are not as easily created as the low-level manipulations for which the 

environment is intended. Moreover, the sounds themselves must be provided from outside the 

environment. In the future, SoundScratch should include a group of these sounds in its own 

directory. Also, there should be some examples of high-level loops, which can imitate loops 

heard in popular music through scripts. 

7.3.5 Computer hardware 

Installing and running SoundScratch in various environments continues to be a challenge. On 

Windows 2000 machines, the necessary windows script will not complete because of some 

differences between Windows 2000 and Windows XP. Consequently, SoundScratch will run on 

these machines, but the sound has some minor clicks occasionally, and Csound will not 

automatically quit when a user quits Scratch. 

Many computers in public areas are purposely crippled: software cannot be installed on them, 

scripts cannot be executed, or they present various alarming warnings and offer limited 

functionality. SoundScratch would not run at all in The Computer Clubhouse. It ran with a rewritten 

script in New Hampshire that limited functionality in some minor ways and prevented Csound 

from quitting. At The Sound End Technology Center it ran, although it produced alarming warnings. 
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There was a surprising amount of variance in how well computers were able to run 

computationally intensive sound manipulations in SoundScratch. Moreover, there seemed to be 

little correlation with expected performance using these computers. Specifically, the age of the 

computer or the CPU in the computer did not seem to indicate how well SoundScratch would run. 

Some Pentium 4 computers were unable to process even three sounds at once while older 

generic machines were able to do this easily. Perhaps this is related to the basic health of the 

operating systems on these various machines and the extent to which they are crippled.  

The most frustrating situation was in New Hampshire. The public computers there periodically 

delete user files stored on the local hard drives of these computers. I learned about this when the 

youth’s creations during the various sessions were deleted while they were using the 

environment.  
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In general, children find it difficult to interact with each other and with the computer at the 

same time. Instead, they often end up using different computers. In this way, they can all explore 

the environment, but they cannot explore it as a team, bouncing off of each other’s ideas and 

learning to work together. For example, during one session in New Hampshire, one child 

explored sound manipulations with the microphone and other children would come up and try 

his scripts, but there was no easy way for them as a group to be actively involved with creating 

the manipulations. Those who were very interested asked if they could use a different computer.  

 

Figure 52: Youth interacting with SoundScratch 



 

- 125 - 

7.3.6 Connecting with other programs and other sounds 

Many youth were interested in using SoundScratch with other sound software. Some of them 

could do this with some guidance. This made the environment of sounds that they could explore 

much richer. 

For example, Frank at The South End Technology Center generated both a sine wave and white noise 

using an open source program called Audacity. (He did not initially intend to create these waves. 

They were a natural result of exploring the program itself.) He then imported the resulting sound 

files into SoundScratch, which provoked him to ask some interesting questions: What does “set 

tempo” mean for a sine wave? What does “set pitch” mean for white noise? He experimented 

with the blocks to answer these questions, and he developed his already-existing scripts in 

SoundScratch to incorporate the new sounds. 

Some youth wished to export the sounds resulting from their sound manipulations into other 

sound software. It is possible to do this using Audacity, but it is not a straightforward process. If 

a block were added into SoundScratch with this capability, this would be much easier to do. 

Moreover, SoundScratch itself could use the newly-recorded sounds for further manipulation. 

Many children thought to sing into the microphone Karaoke-style, with their voice altered in 

some way. If the environment could import .wav and .mp3 files in addition to the .aiff files it can 

already import, this functionality would be facilitated. 

7.3.7 Differences among youth 

I found a great deal of variance in how youth perceived SoundScratch and how they perceived the 

tutorial I gave for SoundScratch. Youth at The Computer Clubhouse were especially passive during the 

beginning tutorial. It almost felt as if they were watching TV when they were watching me. They 

eventually warmed up to talking into the microphone as I did the manipulations. I demonstrated 

what was possible and they found it funny and amusing. After we all took turns playing with it, 

singing, etc., two members took an active interest. 

While the response I get from youth has something to do with the projects themselves, I would 

speculate that it is also very dependent on their relationship with me. If the kid has a reason to 

trust me and senses some rapport between us, she is more inclined to be interested in the 
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projects. If she has no reason to extend trust, as might be the case if I clearly come from a 

different culture or race, she may be willing to offer less trust.  

7.3.8 Interference with observers 

Throughout interacting with all of the youth, it was often unclear how much to interfere with 

their own explorations. For example, Natasha, 12 years old, wanted to animate a ball shooting 

through a hoop. She didn’t know how to do it and asked for help. I didn’t think it appropriate to 

start talking about parabolic motion, acceleration and velocity, etc. In the end, I did give her a 

cursory explanation and had her write the script. I feel mixed about this. On the one hand, she 

asked and why should I deny her knowledge? On the other hand, I think she may have come up 

with her own solutions. While her solutions might not have looked as good or have been 

technically correct, it may have been more creative for her to devise these.  

One boy at The Computer Clubhouse seemed to get frustrated easily. When things did not work, his 

solution was to delete entire projects, then start from scratch. It was hard to judge how much to 

interfere with his process so that he might not get so frustrated. 

7.3.9 Other observations 

Children who used SoundScratch for more than one session in general showed a surprising 

amount of retention. They remembered how the various blocks functioned and how to navigate 

through the Scratch environment to get the results they wanted. This suggests that they find 

reasonable usability and understanding in the environment. 

When presenting SoundScratch, I had been fearful that kids would not be interested. I worried 

that the flashy graphics common in all commercial computer games would overshadow the 

possibilities for creation in SoundScratch. I was wrong. Kids show an interest in telling stories 

through animation and sound using Scratch.  Even though their animations are simple relative to 

commercial games, they are proud of them and show them off to adults and other children. The 

children tend to be very supportive of each other.  
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8. Conclusions and Future Work 

8.1 SoundBlocks and SoundScratch evaluation  

SoundBlocks and SoundScratch were created as a way to explore if sound manipulation might offer 

the same potential for learning and for expression as image manipulation. As an initial venture in 

this arena, we have explored what it means to offer sound manipulation within the 

Constructionist framework. Can sound be programmed like images in a programming language 

for youth? Can a tangible environment for sound manipulation offer a way to learn about 

networks and data manipulation within the framework of exploring sound? 

Both SoundBlocks and SoundScratch differ from earlier Constructionist approaches to sound in that 

they focus on manipulation of sound generated from the youth and the environments around 

them. This contrasts with the more typical high-level approach where users are given notes as 

the smallest unit they can manipulate, all notes are synthesized and cannot be changed within the 

system, and the notes can relate to each other only chromatically. The choice to try an alternative 

approach was intentional. It is part of a more general query exploring whether youth might find 

more meaning in sound manipulatives if these manipulatives are applied to sounds unique to 

them and their environment. 

Quantitative evaluation of environments like SoundBlocks and SoundScratch is difficult. However, 

through my own and music teachers’ observations, there seems to be some consensus that 

students did find enjoyment in exploring both systems. Specifically, just about all of the youth, 

including those who claimed to be unmusical or hate musical instruments, seemed to find great 

enjoyment in making sounds, and then in seeing how these could be manipulated within the 

environments. The sound generated from both systems was of high quality, and this may have 

contributed to how the students reacted. It makes the sounds seem interesting and personal, as 

they can hear their own inflections and recognize various qualities in their voices and the voices 

of their friends. 

Some observers (including me) seemed surprised at what distinctions the youth did not seem to 

notice when manipulating the sounds. As they explored the system, some seemed to gain some 

awareness of these distinctions. The combination between understanding the configurations they 
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made (code or network) and the visual feedback (computer screen or LED) with the sound 

seemed to make a mutually supportive combination in developing these distinctions. 

8.2 Comparing the Two Environments 

Although SoundBlocks and SoundScratch both explore digital sound manipulation within the 

context of Constructionism, this is where the similarity ends. Therefore, I suspect that a direct 

head-to-head comparison between them would have produced meaningless results. However, it 

is interesting to reflect on how the differences between the two environments elicited different 

responses from users. 

Youth are very used to flashy and exciting manipulations of video and audio on computers. 

When presenting to them a computer environment such as Scratch, the comparison with the 

latest X-box or Sony Playstation game may be inevitable. There is no way for any children’s 

programming language to reasonably compete with an X-box game, so on some level it can be 

difficult to initially generate enthusiasm from the youth. In comparison, SoundBlocks seems very 

removed from the computer, so youths’ expectations appear to be different. The youth have 

nothing to compare it to. They have never seen the blocks do anything before, unlike the Dell 

Desktop, which might have been running Civilization 5 minutes earlier. Thus, the youth appear to 

be more inclined to play with SoundBlocks, interact with SoundBlocks, touch SoundBlocks, feel 

SoundBlocks. They seem a lot more forgiving of bugs within the system and overall appear to be 

more easily impressed. This makes me wonder if perhaps a tangible environment promises a 

more fun, interactive and powerful learning environment for youth within the domain of sound.  

Both projects addressed the problematic issue of data manipulation. The problem is that digital 

sound manipulation is usually described as a relational network of various types of data, as 

described in 5.8.1. SoundBlocks addressed the problem by adding adaptive behavior to blur the 

distinctions between various types of data. While this solution has its benefits, the problems of 

how to define the adaptive behavior become increasingly difficult as the system scales to a larger 

project with bigger networks and more varied blocks. Also, some might argue that users will 

have trouble understanding the definitions of the blocks, since the blocks change definitions in 

various situations. This issue did not arise in these evaluations with the current set of blocks. 
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SoundScratch addressed the problem by hardcoding the relational data network into the system so 

that it would be a black box to the user. Some observers of the system who are familiar with 

digital audio processing were critical of this choice and felt that perhaps it took much of the 

interest of exploring the sounds away as the youth couldn’t explore various arrangements of 

effects. 

8.3 Further Possible Developments of  SoundBlocks 

The SoundBlocks environment shows a lot of promise. Already the environment is rich enough 

that youth seem to enjoy exploring it and perhaps find some personal expression within it. We 

intend to continue to develop the system. Here are some of the expansions we are looking at. 

8.3.1 Portable 

SoundBlocks should be completely portable. Users should be able to carry it with them wherever 

they go, and perhaps hold it in their hand. They should be able to build truly three-dimensional 

structures. To this end, we have already redesigned the circuit board to fit in the size of a golf 

ball. We are looking at changing to smaller connectors that retain the robustness of our current 

RCA and DC jacks. We are also exploring how to move the synthesis engine to a DSP chip, a 

goal since the genesis of the project. This switch will happen in two phases. In our first phase, 

we are porting the Python code to run in C on an Atmel Mega 8535. In the second phase, we 

will explore possibilities for integrating this chip to a DSP sound synthesis engine. 

8.3.2 Support more varied structures with true three-dimensional support 

We are exploring connectors that are much smaller than the current connectors and aren’t 

mounted to the circuit board. This will allow us to create a true 3-dimensional building platform. 

Also, blocks should be able to plug into each other directly and connectors should be able to 

plug into each other. We are also looking at using magnets as connectors, as has been done in 

similar projects (Gorbet, Orth et al. 1998; Newton-Dunn, Najano et al. 2003). Our one-wire 

protocol makes the magnet option attractive, as we do not have to worry about alignment issues 

that arise when more then two connections are necessary. 
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8.3.3 Redefine the Sample Maker 

The Sample Maker needs to be completely independent from the rest of the system. Specifically, 

it needs to be small, self-powered and easier to use. Users should be able to perhaps attach the 

sample maker to their key chain so they can easily record what interests them as they go about 

their daily lives. We already have initial sketches for a Sample Maker that runs off on Atmel 

ATTINY microcontroller, uses a simple DAC, and uses Compact Flash. 

As an alternative, we are considering eliminating the hardware of the Sample Maker entirely and 

instead designing software for cell phones that will let these devices assume the role of Sample 

Maker. 

8.3.4 Add support for multiple audio streams 

Currently, SoundBlocks supports one speaker and one microphone within the network. If the 

system could support multiple concurrent audio, perhaps it would be possible for multiple 

microphones and multiple speakers to be producing simultaneous independent output. Such a 

system would increase the possibilities for interactivity. It is easy to imagine games and stories 

youth could make up together where sound is passed from one place to another, and the youth 

can hear the sound moving from one speaker to another as it passes through. 

8.3.5 Expand visual feedback 

An RGB LED gives some information, but perhaps for a large-scale network it is not enough. 

We are looking at designing a block that has a multi-character LCD readout that can be attached 

between blocks. The LCD block will be transparent to the network function, but the block itself 

will provide detailed information about the signals being passed through it. This could be a 

useful debugging tool. 

8.3.6 Have varied shapes for the blocks that symbolize their function 

If the blocks looked like the functions they represent, they may be more intuitive to users. How 

should a pitch shifter visually look different than a vocoder? What might a volume block look 

like to distinguish its audio function? When answering these questions, we wish to remain 

especially aware of the importance of the aesthetic appeal of the blocks. The blocks need to 
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appeal to the users visually. This has been clear throughout design and evaluation of the project, 

and its importance cannot be overstressed. 

8.3.7 Add more blocks which alter the inherent character of the sound 

Two very popular blocks among users were The Robotic Combiner Diner and The Smooth Slider. 

These blocks were more popular than Polly’s PitchShift Parlor. At first it was unclear why this 

might be the case. When we asked users about this, they told us that both The Robotic Combiner 

Diner and The Smooth Slider do more than just change the sound. The operations of both of these 

blocks alter inflection and expression of people’s voices. Therefore, we are looking at expanding 

the system to include more blocks that, like The Robotic Combiner Diner and The Smooth Slider, 

change the inherent character of a sound.  

8.3.8 Make SoundBlocks compatible with other audio environments 

One serious criticism which music teachers made of the system was that users could not 

conveniently take the sounds that they had made home with them. SoundBlocks offers no way to 

provide “refrigerator audio art.” Users should also be able to easily import and export audio out 

of the system. 

8.3.9 Add support for higher level structures 

While we wish to make manipulating the sound the principal focus of the system, we also wish 

to add support for large-scale structures. Users should be able to define sections of sound that 

they can trigger with MIDI. To address this concern, we have already designed a MIDI block. 

The MIDI block can accept MIDI data from any standard MIDI device and send it into the 

network. 

The system also needs some sort of sequencer, and we are having ongoing discussions of what 

exactly this would be. As has been the goal with the entire system, we want to make the 

sequencer both intuitive and inexpensive. This may spill into a rethinking of the basic function 

of the sampler or how it is used. 
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8.3.10 Send audio through the network 

The current version of SoundBlocks appears to send audio through the network. Internally, 

however, audio data is never transmitted in the network. Because of this, Micky Mic transmits 

audio wirelessly. There are several disadvantages to this approach: cost, expandability to support 

multiple streams of audio, and power. Therefore, we are looking at ways of adding high-speed to 

our one-wire protocol so that we can eliminate the wireless connection. 

8.3.11 Add sensors 

The original concept of SoundBlocks was as a new musical instrument with an adaptive interface. 

This requires that some blocks must be made sensitive to gesture motion of various types. To 

accomplish this, we are looking at various inertial measurement unit sensors, as well as light, 

sound, and proximity detectors. We also are experimenting and very excited about a stretchable 

fabric we have found whose resistance changes as it is stretched. We imagine using this fabric, 

for example, to create a delay block which the user actually stretches to change the delay. 

8.3.12 Add support for loops and multiple outputs 

Networks can be especially exciting to explore if there is feedback allowed within the system. 

Currently, our system allows no feedback. We are looking at what would be involved in adding 

support for feedback and, a related issue, multiple outputs. This is not a trivial task. Even some 

virtual environments, such as Pd, do not allow loops in their networks. Also, there are some 

concerns with the one-wire protocol supporting various combinations of loops and parallel 

signals. 

8.3.13 Clone blocks, users write code 

A clone block would be a block that can take on the function of a network of blocks. How this 

would be done and how it would be represented are still under discussion. What is clear is that it 

would be powerful if users could setup a network configuration and then somehow assign one 

block, the clone block, to assume the functions of the entire network. It could be that the user 

would attach the network’s inputs to the clone block’s inputs and the network’s outputs to the 

clone block’s outputs. It could also be that the LCD block mentioned in section 8.3.5 will 
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identify the clone block’s network configuration when plugged into the clone block. A clone 

block can be thought of as a macro. 

Since the internal code is very modular and all of the virtual patchbay and instance manipulation 

within Csound is wrapped up in macros, it is already easy for users who know Csound to add 

another block to the system. Extending this idea, it is imaginable that users themselves could 

assign code to the blocks. This could be along the lines of how Crickets are programmed, except 

using a Csound/LOGO-like language interface. 

8.3.14 Create GUI and release as open source 

The structure of the code, as explained in section 5.2, is such that the network discovery is 

completely separate from the rest of the code. Therefore, it would be relatively easy to create a 

completely separate module that replaces the network discovery implementation. Specifically, we 

have already started to design a GUI that could be used to manipulate blocks on screen instead 

of the physical blocks. The GUI would be similar in some ways to Max/MSP and Pd, except 

that the blocks would be programmed in Csound, have adaptive behavior, and each would have 

color attributes as well sound attributes. If we were to complete the GUI and release the entire 

code as open source, users could extend the environment with their own Csound and Python 

code to add blocks and extend adaptive behavior. 

Furthermore, it may be possible to integrate both the GUI environment and the physical 

environment together, building on the ideas of the first iteration’s use of masses and springs.    

8.3.15 Connect SoundBlocks over the Internet 

We are considering ways in which users might be able to have their SoundBlocks communicate 

and interact with each other over the Internet. It might be possible for people’s environments to 

affect each other, thus creating a larger network of blocks over the Internet, each comprised of 

the smaller local blocks. 
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8.4 Further Possible Developments of  SoundScratch 

8.4.1 Look at Timing Issues 

When writing a script such as a simple metronome, users notice irregularities in the timing of the 

sounds. It is unclear right now why that is. With sound it is absolutely crucial that the timing is 

perfect. This problem needs to be investigated further. 

8.4.2 Add blocks 

Currently SoundScratch supports absolute settings as in “set filter to x” or “jump to x seconds.” 

Relative positions would also be helpful. For example, if a user could specify that one sprite 

plays slightly ahead of another, she could easily create a chorusing effect. There could also be a 

“glide by” block for sound, paralleling the “glide by” block already implemented for visual 

sprites, and this would make it easy for users to create effects like scratching. 

8.4.3 Make more compact interface with more integrated engine 

The Squeak/Csound relationship is a powerful way to try various digital sound manipulations 

within the Scratch environment. It is an excellent way to prototype ideas in a testing environment. 

However, this environment is a bit problematic for a final product. The pipe is not as robust as 

would be needed when installing on multiple environments. And, at the least, Csound would 

need to be more hidden if running in the background. Also, the current Csound implementation 

allows for no error checking. Therefore, if an unexpected event occurs, Csound will disappear. 

Since it is impossible to predict what might happen in every situation, it is a bit worrisome to 

attempt to create a robust environment without error checking. 

One solution may be to wrap the necessary audio processing functions in a C library and call 

them directly from Squeak. This has been the solution Scratch uses for its graphic effects. 

8.4.4 Expand import/export facilities 

Currently, the system supports importing .aiff files only. There is no export facility for sounds 

manipulated within the system. Already users have attempted to import .wav files. The import 

facility needs to import as many different types of files as we can support. Also, users need to be 
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able to export their manipulated sounds outside of the environment easily and in multiple 

formats. 

8.4.5 Provide more sounds 

While the system is not intended as a way to manipulate synthetic waves, it can do this if 

synthetic waves are provided as samples. For users who want to create drum beats and guitar 

riffs, the system should provide appropriate audio samples for these as well. Perhaps there 

should be a folder of sounds with a subset of the MIDI specification. 

In evaluation, users actually had interesting uses for the provided sine wave, which had been 

intended only for internal testing and not for users. Providing more waves that are short, have 

no beat of their own, and can easily be integrated with visual sprites could add power to the 

system. 

8.4.6 Provide more demonstrative code 

Right now there is only one true demonstrative script available for SoundScratch. It is an excellent 

script, written by Jay Silver, but it is complicated as an initial script to introduce users to the 

environment, and it is not enough as a general introduction for what is possible. 

Users enjoy seeing scripts written on the fly with the “forever” and “mouse x” blocks that 

immediately show real-time interaction with the effects. It’s not enough. The jump between 

these demonstrations and creating a script with a story or a unique and personal statement is too 

big and users have trouble making this leap. Demonstrative code would help address this. 

8.4.7 Add support for higher level structures 

Although the system should continue to support manipulating the sounds themselves, users will 

need ways to build high-level structures that make sense musically, are intuitive to them, and 

build on the framework of writing scripts in Scratch. With this in mind, we are looking at models 

of sequencers in other software and considering what parts of these interfaces are valuable for 

our own work and support the programming paradigm in Scratch. 
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Appendix A: Python Æ Csound commands: SoundBlocks 

Commands to Csound are 3 chunks long: 
 
chunk 1: 0xc0 [cmd]     [param 1] 
chunk 2: 0xb0 [param 2] [param 3] 
chunk 3: 0xa0 [param 4] [param 5] 
 
each parameter is 8 bits, holding a number between 0 and 255 
 
COMMANDS: 
 
1 : create instance 
[param 1] = instrument # 
[param 2]*128+ [param 3] = instance # 
 
2: delete instance 
[param 1]*128 + [param 2] = instance # 
 
3: connect output to cable 
[param 1]*128 + [param 2] = instance # 
[param 3] = output # in instance 
[param 4]*128 + [param 5] = cable # 
 
4: disconnect output from cable 
[param 1]*128 + [param 2] = instance # 
[param 3] = output # in instance 
[param 4]*128 + [param 5] = cable # 
 
5: send sensor value 
[param 1]*128 + [param 2] = instance # 
[param 3] = sensor # 
[param 4]*128 + [param 5] = sensor value 
 
6: get value 
[param 1]* 128 + [param 2] = cable # 
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Appendix B: Squeak Æ Csound commands: SoundScratch 

- Create instances: i10 0 3600 [instance #] 
- All commands: i[cmd type] 0 3600 [instance #] 
 
- Set sound to: 
[cmd (p1)] = 1001 
[p4] = instance # 
[p5] = ftable # 
[p6] = length of sample 
 
- Set sample speed 
[cmd (p1)] = 1002 
[p4] = instance # 
[p5] = speed. Speed ranges from -8192 to 8191 
 
- Set pitch 
[cmd (p1)] = 1003 
[p4] = instance # 
[p5] = pitch. Pitch ranges from -8192 to 8191 
 
- Set tempo 
[cmd (p1)] = 1004 
[p4] = instance # 
[p5] = stretch. Reanges from -8192 to 8191 
 
- Start sound 
[cmd (p1)] = 1005 
[p4] = instance # 
 
- At end of sound 
[cmd (p1)] = 1006 
[p4] = instance # 
[p5] = cmd: 
0 - stop 
1 - wait 
2 - loop 
3 - reverse 
 
- Sound playing? 
[cmd (p1) = 1007 
[p4] = instance # 
(Csound will return on Yoke NT 1: [224] [1] [x] [y]) 
x is 1 if sound is playing, 0 if sound is not playing 
y is “don’t care” 
 
- Stop sound 
[cmd (p1)] = 1008 
[p4] = instance # 
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- Rewind sound 
[cmd (p1)] = 1009 
[p4] = instance # 
 
- Jump to 
[cmd (p1)] = 1010 
[p4] = instance # 
[p5] = second to jump to. (- #s are counted back from the end) 
 
- High pass 
[cmd (p1)] = 1011 
[p4] = instance # 
[p5] = absolute value: range up to 1024. Filter from 50-5000Hz 
 
- Low pass 
[cmd (p1)] = 1012 
[p4] = instance # 
[p5] = absolute vale: range up to 1024. Filter from 5000-50Hz 
 
- Reverb 
[cmd (p1)] = 1013 
[p4] = instance # 
[p5] = absolute value: seconds of reverb /100. Up to 1000? 
 
- Turn instance off 
[cmd (p1)] = 1014 
[p4] = instance # 
 
- Reset all instances 
[cmd (p1)] = 1015 
 
- Reset instance 
[cmd (p1)] = 1016 
[p4] = instance # 
 
- Initialize Csound 
[cmd (p1)] = 1017 
 
- Set live microphone 
[cmd (p1)] = 1018 
[p4] = instance # 
 
- Delay 
[cmd (p1)] = 1019 
[p4] = instance # 
[p5] = absolute value: mS for delay. 
 

 

 


