Chord Recognition in Beatles Songs

Chord Recognition in Beatles Songs

While a graduate student at MIT’s Media Lab, I collaborated with office-mate Vi­ctor Adán to explore how if we might train a machine to recognize chord changes in music. We tried multiple models to solve the problem, including Support Vector Machines, Neural Networks, Hidden Markov Models, and a few variations of Maximum Likelihood systems.

We chose Beatles tunes as a subset of the larger problem and trained our systems with 16 songs from three of their albums. Our systems processed 2700 training samples, 150 validation samples, and 246 testing samples. Our most successful system, a Support Vector Machine, achieved 68% accuracy in testing.

Our intention was to further the research which will lead to applications such as automatic transcription, live tracking for improvisation, and computer-assisted (synthetic) performers. Our models were an extension of the research provided by the following papers:

  • Musical Key Extraction from Audio, Steffen Pauws
  • Chord Segmentation and Recognition using EM-Trained Hidden Markov Models, Alexander Sheh and Daniel P.W. Ellis
  • SmartMusicKIOSK: Music Listening Station with Chorus-Search Function, Masataka Goto
  • A Chorus-Section Detecting Method for Musical Audio Signals, Masataka Goto

Main Website

Similar Posts

  • Ghost in the Machine

    Originally conceived in 2008, Ghost in the Machine (GITM) consists of a webcam and display which mixes and crossfades events in realtime with motion-activated video it has recorded previously. It continually shifts between 3 states: individual, community, and the world. GITM has been shown in many venues and contexts.

  • Digital Puppetry

    I worked with a team of colleagues, community members, and urban youth. Our intention was to help the youth learn in a playful environment, find personal self-expression, and have their voices heard by communities in Boston. To do this, we adapted commercially available technology to provide a unique medium: digital puppetry.

  • Still Life

    In 2011, as part of Hack.Art.Lab, I collaborated with composer Mary Ellen Childs and percussionist Michael Holland to create live animation triggered by live performance of Mary Ellen Childs’ composition “Still Life.” We analyzed the piece into 11 sections and created algorithmic video triggered by sound and motion to match each of the 11 sections. The video was projected…

  • Touch #1

    In 2012 I created my first interactive touch wall: Touch #1. The work built on my experience creating the visuals for Still Life and was largely inspired by seeing autistic children experiencing pure joy while interacting in an immersive environment. Touch #1 received a great response and was later installed at Exploration Place and at…

  • Touch #2

    Touch #2 is a playful virtual environment and an interactive, musical instrument. Viewers become participants through play. The piece installs on any flat wall with a high ceiling. Sensors mount on top of the wall to detect multitouch. A virtual environment of suns, stars and planets projects onto the wall. Gravity, inertia, friction, and wind…

  • Microphone with proximity detection

    Around 2004 I developed a few protoype microphones enhanced to also offer proximity detection. The microphone could adjust it’s amplitude and bass response based on the proximity of the person using it. This would lessen the variable results users experience when holding a microphone too close or too far. Moreover, with proximity or its derivative mapped to a combination…